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Adsorption of a bidisperse polymer mixture onto a flat wall
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This paper studies the thermodynamic properties of the competitive adsorption between two polymer species
differing only in length onto a flat wall from dilute solution by both mean-field and scaling theories. The
employed mean-field approach is based on a recently developed theory for monodisperse solutions, which goes
beyond the usual ground-state approximation to account for the contribution of the tails. As in the monodis-
perse case we also find a crossover lergfthwhich separates a loop-dominated region adjacent to the wall
from a tail-dominated region farther away from the wall. This length scale strongly depends on the length of
both chains and is the relevant scaling variable for the loop and tail concentration profiles. The space variation
of these profiles and the adsorbances are discussed in detail. We find a strong adsorption preference for the
long chains, which is very pronounced in dilute solution. This result parallels those of experiments and, in its
mean-field version, can be compared quantitatively with the numerical calculations of the Scheutjens-Fleer
theory[G. J. Fleeret al,, Polymers at Interface§Chapman and Hall, London, 1993However, mean-field
theory predicts that the adsorbances depend only on the ratio of the two chain lengths, whereas an absolute
dependence on chain length is found by scaling theory. Since the scaling theory extends the mean-field
treatment to good solvent conditions, this qualitative difference between both theoretical approaches should be
observable in experimentsS1063-651X97)13402-X]

PACS numbegps): 68.10—m, 82.65.Dp, 61.25.Hq

[. INTRODUCTION modynamic properties of the layer is one aspect which we
want to discuss in this paper. Despite this proviso with re-
Many polymerization reactions generate samples with @pect to the simple entropy argument it suggests that the
rather large molecular weight distribution. If this polydis- adsorption preference is more pronounced in dilute solution.
perse mixture is exposed to an attractive wall the equilibriumThis expectation is indeed borne out in experiments and can
adsorption involves several stages, depending on the overallso be understood theoretically by self-consistent mean-field
concentration of the samp|&]. At very low concentrations calculationg1,4—6].
all polymer chains, irrespective of their length, are adsorbed, The self-consistent mean-field theory, as developed by
and the adsorption isotherm, i.e., the excess amount of pol\Gcheutjens, Fleer, and co-workgts5—7] analyzes the struc-
mer per unit area in the interfacial region as a function oftural properties of an adsorbed polymer layer in terms of an
concentration, rises steeply. As the concentration increasesfective single-chain problem. Each monomer of a chain
and the wall becomes more and more covered, the lonthereby experiences an average potential consisting of the
chains begin to replace the shorter ones. During this processall attraction and of the mean-field excluded-volume inter-
the adsorption isotherrfusually) gradually increases before action. Since the excluded-volume interaction again depends
crossing over to a plateau when the wall is saturated by then the structure of the laydi.e., on the average monomer
large polymerg1-3]. The adsorption preference of the large concentratio8]), the theory is self-consistent. From the nu-
chains(in dilute and moderately concentrated solutjoiss  merical solution of the resulting equations the various con-
often rationalized as followEl,5]: When a polymer adsorbs tributions of loops, trains, and tail¢] can be isolated. Loops
at a wall it loses translational entropy in comparison to theare portions of the adsorbed chain in which only the first and
bulk. Since the entropy per chain in the bulk is given®y the last monomer touch the wall, trains are portions in which
= (% N)In(¢%eN), where ¢° is the monomer bulk volume all monomers are adsorbed, and tails are portions in which
fraction andN the chain length, large chains lose less en-only the first monomer is in contact with the wall. Trains
tropy than smaller chains and are thus adsorbed preferemay therefore also be considered as a sequence of small
tially. Strictly speaking, this argument is not completely cor-loops with a size of the order of a monomer. Close to the
rect because the loss in translational entropy is not the onlwall small loops dominate the structure of the layer, whereas
driving force which determines the equilibrium structure ofthe concentration of the monomers in the tails is negligible.
the adsorbed layer. The equilibrium structure results from thé\s the distance from the wall increases the contribution of
balance of the chemical potentials between the free chains ie loops to the overall monomer concentration profile de-
the bulk and the adsorbed chains. The chemical potentials @freases, but that of the tails increases. Due to this opposite
the adsorbed short and long chains are different due to chaifehavior of the two profiles there should berassover dis-
end effects. How these chain-end effects influence the thetance Z, which separates a loop-dominated regime adjacent
to the wall z<z*) from a more distant regimez§ z*),
where the tails primarily determine the decay of the mono-
* Author to whom correspondence should be addressed. Electronimer profile. The division of the adsorbed layer in an inner
address: baschnag@europe.u-strashg.fr and an outer part was suggested by the numerical solution of
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the self-consistent mean-field thedry] and has also been centration at distancez from the wall [8,10], i.e.,
observed in a recent Monte Carlo simulat{®j. c(z)=c4(2) +c,(2), and ¢(z) the total monomer volume
This picture of the structure of an adsorbed layer has beefraction. WhereadJ,, already vanishes at short distances
substantiated theoretically by an extension of mean-field anffom the wall,U;,; tends towards the bulk volume fraction,
scaling theorieg10,11. By going beyond the ground-state ¢%= ¢3+ 49, if z—. Therefore it is convenient to define

approximation/1] the contribution of the tails can be incor- the origin of the potential as the bulk state so that
porated in the mean-field treatment. This refined theory,

which is valid in the asymptotic limit of very long chains U (z)/kgT— ¢°=U,(2)/kgT+ ¢1(2) + $o(2) — $3— b5
only, has been developed for monodisperse systems in the

full concentration regime ranging from dilute to concentrated 7
solutions. A central result is the natural appearance of the :=U(2)/kgT+U(2)/kgT — O.
crossover distance* and the derivation of its chain length (2.1

dependencglQ]. This distance also appears as the pertinent

length scale in the extended scaling theory which goes bdn the following we measure all energies in unitskafl and
yond the mean-field approach by calculating the spatiahll lengths in units of//\/6.

variation of loop and tail profiles under good solvent condi- One of the basic quantities to analyze the structure of the
tions[10,11]. Since the scaling theory yields the mean-fieldadsorbed layer is the partition functic®(n;,z) of chaini
results when classical critical exponei] and the space with length n; with one end atz and the other end lying
dimensiond=4 are used, and since the extended mean-fieleinywhere betweer=0 andz=c. This partition function

theory quantitatively agregs most caseswith the numeri-  obeys a Schidinger-like equatiori8,10]
cal solutions of the Scheutjens-Fleer thehB], both ap-

proaches are indeed compatible and complement each other. 9z P2
Therefore we use the extended mean-field and scaling ﬁ—m:?—U(Z)Zi 2.2

theories in this paper to discuss the competitive adsorption of

a polydisperse polymer sam_ple. Polydispgrsity is modeled iRvith the following boundary conditionsi) Z;(0,z)=1 (the

the simplest—though experimentally studigt3}—fashion  partition function of a monomer is normalized to. Tii)

as a bidisperse mixture of chains of different length. Sincqjyy = (n,,z)=1 (very far away from the wall the chains
we expect the adsorption preference to be most pronouncege free Gaussian chains, whose partition function is normal-
in dilute solution, we focus on this case in the present Workized). (iii) @ InZ(n; ,2)/dz|,—o= — 1/b. The third condition

although more concentrated solutions could be treated by the-ounts for the effect of the short-range wall potentiglat

same methods. distances larger than its range which is assumed to be of the

The paper is organized as follows. In the first part of Secqder of the monomer size. With this stipulation the detailed
Il we summarize those results of the extended mean-flelghape of the wall potential is not important. The only rel-

theory which are important for the subsequent analysis, aRsyant parameter is thextrapolation length bwhich is in-
ply them to the case of the bidisperse mixture, and compargqrsely proportional to the excess energy per monomer with
our findings with the Scheutjens-Fleer theory. In the secongeghact 1o the adsorption threshold. Therefore condiiion
part we drop the assumption that both chains considerablyan fortiori be applied to accurately describe thaiversal

exceed the size of the adsorbed layer and discuss the caseqfyan.field propertiesf the absorbed layer in the central and
which the s_hort chains are much smaller_than the layer'gjistg region, i.e., foz>b, in which we are particularly in-
extent. Section Il complements the mean-field treatment by asted.

developing thhe cor_respon:jmg anllng.theory. Sec|t|o_n V""" In addition toZ; one can also introduce the partition func-
summarizes the main results and contains our conclusions jons of an adsorbed and a free chain, i&; and 2, . By

afree chainwe mean a chain which does not touch the wall.
Il. MEAN-FIELD THEORY Therefore Z; ; satisfies Eq.(2.2) with the same boundary
) - _ conditions except that the wall boundary conditi@n) has
The mean-field _theory of the competitive adsorpt|or_1 ofto be replaced byZ; ;(n;,0)=0. On the other hand, aad-
two polymers of different length starts from the following sorped chaintouches the wall at least by one monomer.
assumptions: The polymers are considered as ideal Gaussiafhce 2, comprises both the adsorbed- and the free-chain
chains with radii of gyration Ri=(/?/6)N; and  configurations, it is possible to defir®,; as
R3=(/?/6)N,, where the statistical segment lengtH{ 8] is '
assumed to be identical for both chains. These chains expe- Z,i(ni,2):=2Zi(n;,2)— Z(n; ,2). (2.3
rience an average external potentigl),/kgT, which consists
of two parts. The first partJ,,/kgT, stems from the short- Taking the boundary conditions for the total and the free-
range interaction with the wall. The impenetrable wall ischain partition functions into accountz,; has the fol-
located atz=0 and is assumed to be structureless in thdowing properties: (i) Z,;(n;,0)=Z(n;,0) and (ii)
X,y directions so that the distanzdrom this wall is the only  lim,_...Z,;(n;,z)=0.
relevant length scale. The second paft,/kgT, (approxi- With these partition functions one can calculate the mono-
mately accounts for the excluded-volume interaction with mer concentratiorii.e., volume fractioh profiles for loops
other chains. In mean-field theory the excluded-volume inand tails. Since the concentration profi#(z) of a random-
teraction is given by;(z)/kgT=vc(z) = ¢(z), wherev is  walk-like chaini is quite generally related t&;(n;,z) by
the excluded-volume paramete(z) the total monomer con- [8,10]
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¢i0 N; For this situation two cases are distinguished: Gasesfers
oi(z)= WJ dnz;(n,z) Z;(N;—n,z), (2.4  to the situation whemR;>R, and both radii of gyration are
1o much larger than the size of the adsorbed layer. On the

other hand, in caséb) only R; is assumed to exceex,

the decomposition of;(n;,z) in an adsorbed and a free part whereasR,<\.

immediately yields the profile of loops

¢i0 N; A. Both chains are larger than the size of the layer:
¢|,i(2)=Wf0 dnZ,i(n,2) Z,i(N;—n,z), (2.9 A<R,<R,
I

Equation(2.2) has the general solution
of tails

249 [, Zi(n,2)= 2 Kp(Dexd —Eani], (212
¢>m<z):W_'JO dnZ;(n2) Z4(Ni=n.2), (2.6

where the normalizeftreal) eigenfunctions satisfy
and of free chains
d®ys
42 +U(2) hs=Esis (2.13

¢ [N -
¢f,i(z):WJ0 dnz;i(n,2) Z;;(Nj—n,z). (2.7

o _ _ o andKg is given byKs= [gdzyg(z) [10]. If U(z) were zero,
In order to justify, for instance, the identification of 8.5  Eq. (2.12), subject to the boundary conditions of the adsorp-
with the loop profile remember that, ;(n,z) represents the  tion problem, would have one bour(de., adsorbedstate
partition function of an adsorbed chain withmonomers, g = —1/h? and the corresponding eigenfunction would de-
whose one end is situated at Since an. adsorbed chain crease exponentia”y with decay_|engbh The presence of
touches the wall at least once and singg;(n,z) and the repulsive potentiall(z) can only increase the ground-
Z,i(N;j—n,z) have a common end point at distareéom  state energy without adding further bound states. Therefore
the wall, their product must describe a loop. we have —1b?<Ey,=:—e=—1M\? if U(z) is nonzero.
bancel’;, i.e., the total amount of monomers per unit area ingjgenfunction decreases exponentidlfyz=\), but the de-

the adsorbed layer, by.0] cay length is nown. Thereforex measures thsize of the
B adsorbed layef10].
Fi:f A4 ¢y i(2)+ di(2)]=T i+ ;=T\ (2.9 If_ n;>1 one can separate the co_ntrlbutlon of the_adsorbed
0 chains toZ; from that of the free chains in the following way
[10]:

The last(approximate equality holds because the monomer

profiles rapidly decay towards zero so that the major contri- %

bution comes from the loop-dominated regimez* [10]. Zi(n; az):KO‘//O(Z)eXF[niE]"'j dgK(a)¥(q,2)
Another way to estimat€ is to integrate the density profile 0

pa; Of the end monomers of the adsorbed chains. This den- X exd —niq?]

sity profile can also be expressed in terms of the partition

function as[10] =Z5;(n;,2)+ Z;i(n;,2). (2.14

2¢i° In the limit n;—o°, Z;; vanishes and the partition function of
Pai(2)= ~Zai(Ni 2) (2.9 the adsorbed chains solely determits The ground-state
' dominance approximatiofil] only works with Z,; also for
so that finite chain length and thus ignores the contribution of the
tails [see Eq.(2.6)]. Inserting Eq.(2.14) into Eq.(2.10 the
o adsorbance becomes
Ii=¢/ J dzZ4;(N; ,2). (2.10
° T';= ¢°K 2exd N;e]. (2.15

Based on these introductory considerations we want to dis-

cuss now the structure of an adsorbed layer consisting of twdhe same result could have been obtained by balancing the
chains of different length, which is in equilibrium with a chemical potential of the adsorbed layer with that of the di-
dilute solution. Under this condition one can neglect the bulkute bulk (see Sec. Ill B for an application ajd1]). Using

and the free-chain volume fraction in comparison to the locaFds. (2.14 and(2.19 in Egs. (2.5 and(2.6) the profile of
monomer concentration inside the layer so that the potentidghe loops is determined Hy.0]

in Eq. (2.2 becomes

bi(2) =97 =T y5(2)~T¥i(2) (2.1

V@)= 2 42+ (2] 1y
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dzzﬁi 1. Chain-length and concentration dependence of

— g2 TV(@)+elyi=0;

Since the total adsorbande is given byIT';+T',, one
finds by using Eqs(2.8), (2.16, and(2.22),

il L0, imu(2=0 2.17) r
dz|,~ " LT | Clmr. (2.29
2

and that of the tails b
'S by On the other hand, the ratio of the two adsorbances can also

#.1(2)=Bi$i(2) ¢i(2), (2.18 be expressed with the help of Ed2.15 and(2.19 as
where Fl)z ¢2(K1)2
= = —| exd(N;—Ny)e].
| r, ~glic,) AN N)e]
Bi=—r; K=\T|K 2.1 o o
"ONK =LK 219 Taking into account thak;= [5dzy;(z) another application
d of Eq. (2.22 yieldsK;/K,=C, so that
an
Iy ¢
Ni —=—exd (N;—Ny)e]. 2.2
a2 [ lanz naex-na @20 g AT N)el (229
ith From this equation the chain length dependence @f., of
wit the size of the adsorbed layean be derived if one usésee
42 1 Egs.(2.19, (2.19, and(2.25)]
1 .
——z tU(2)+elei=1; ¢i(0)=0, limgij(z)=—.
“ . VK exTNg 2] 1+ }
'=ri+I',=v¢;K:exdNq€e/2]| 1+ —
(2.22) 1Tl2 1™ 1 Ciz

Since the functions); and¢; obey the same equations with 5 the results of Sec. Il ABee Eqs(2.39—(2.42)],
the same boundary conditions for both chain lengths, we

must have 2 C |
F==, Ki=——=—\2In-
Y1(2)=Cuoho(2) and ¢1(2)=x(2)=¢(2), (2.22 b Ji+ci, b

where C,, is a proportionality constant ang; has to be This yields fore
equal top, due to the 1 on the right-hand side of EJ.21). o
The physical reason for the latter property is tgatepre- 02l 1+ ﬁex . & N

sents the partition function of a tail, which is the same for 1 ¢(1) N, 1€

both short and long chains, since the density profiles of the (2.27
end monomersp,;(z), are cut off exponentially iz=\ and

we assuma <R,<R; in this section. If one uses this ansatz Where a term of order [in(I/b)] has been ignored and Eq.
together with Eqs(2.16 and(2.18 in Eq. (2.11) the poten-  (2.26 was applied again. This equation determire® a

N1€: —In

tial U(2) is written as self-consistent fashion. Analytically, it can only be solved if
, , N;=N,=N, with the result Ne=—In[(¢3+¢9b?]. If
U(2) = ¢1(2) + §5(2) + B111(2) 91(2) + Boha(2) 92(2) N,<N,, an approximate formula may be obtained by assum-

ing C;7 to be small so that the leading order expression,

=y*(2)+ : . . . :
VA2 +BY(2)e(2) .23 N;e= —In[¢%?], can be reinserted in the right-hand side of
with the definitions Eq. (2.27. Then
\/—2 1 BlC12+ BZ N.e |n{ 0b2 1+ ¢g(¢0b2)l—N2/N1> (2 28)
z):=+y1+C z) and B= 3= ——. 1€~ 1 —ol¢P1 . .
W(2) Zra(2) P o 0

(2.24 This equatior(fortuitously) recovers the monodisperse result

As in Ref.[10] the last definition introduces a new length f N1=N2. Since the exponential function in EQ.26 is
scalel which will turn out to be related to the crossover @Wways larger than or equal to 1, the assump@yf<1 is
length z* from the loop- to the tail-dominated regime. The certainly justified if ¢5<@?, but also remains valid for
functions ¢ and ¢ satisfy Egs.(2.17) and (2.20) with the ~ ¢9> % as long asN,/N;<In(¢b)/In(¢5h?). In the oppo-
potential (2.23. In this form the equations are identical to site caseNZ/N1>In(d)gbz)/ln((ﬁ‘sz), one can again derive an
those for monodisperse chains so that the solutions deriveapproximate formula foe, which coincides with Eq(2.28

in Ref.[10] can be used. Before applying these solutions tovhen interchanging the labels 1 and 2.

calculate the loop and tail profiles we want to determine and Equation(2.28 provides a criterion for the validity of the
discuss the proportionality constaBj, in the next two sub- initial assumption that the thickness=1/e*? of the ad-
sections, sinc€, is related to the ratio of the adsorbances.sorbed layer is smaller than the radius of gyration of the



3076

short chains. The conditioh <R, is satisfied as long as
N/Ny>— UIn[¢TbA(1+ (B! $7) (43b%)~N2/N1)]. The op-

posite case where the short chains only have a weak affinity

to the covered wall is considered in Sec. Il B.
Inserting the approximate formu(@.28 in Eq.(2.26) one
obtains for the ratid™; /T,

ry_ ¢ #2 : e
T, & BPo?| 1+ ¢—(1)(¢2b2)1 N2 /Ny
(2.29
and forl' /T andT', /T’
I d)g ¢>8 ) 1-Ny/Ng) —1
?1:(“—3 ¢7b 1+—g<¢i’b2)1 N2 /Ny
(2.30
and
T 0 0
?zz[ljuﬂé $%02 1+%
2 1
—(1-Ny/Np)) -1
><(¢2b2)1—N2’N1) ] . (231
which yields forN;=N,
I, ¢ T, &4
=70 S0 T — 0. .0 (232)
[ i+ T ¢i+¢;
and forN,/N;—0
r; 1 o o $3b%(1+43p)
I 1+¢%b%(1+¢5b?)" T 1+ ¢Ob%(1+ ¢b?)
(2.33

Equations(2.30 and (2.31) show that the ratios of the ad-
sorbances only depend &, /N, and not on the individual
chain lengths. The same result is also found in(themeri-
cal) solution of the Scheutjens-Fleer the§By6], with which
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FIG. 1. Comparison of the Scheutjens-Fleer theory and Eq.
(2.31). The figure shows the ratio of the adsorbahgeof the short
chains to the total adsorbante(=I",+1I',) as a function of the
chain-length ratioN,/N; when both chains have the same bulk
volume fractiong® and b?=6. The thick lines correspond to the
Scheutjens-FlediSF) theory[6], whereas the thin solid lines are the
results of Eq(2.31).

which coincides with Eq(2.27) when identifyingBg with

b2. Using therefore b>=6 and choosing furthermore
$9= 5= ¢°=10"2,10"%,10"5, Eq.(2.31) can be compared
with Fig. 1 of Ref.[6]. The result of this comparison is
presented in Fig. 1. In the range of validity of Eg.28 our
approximate formula agrees very well with the numerical
solution of the Scheutjens-Fleer theory. Since the depen-
dence ofl’,/T" on N,/N; is symmetric, this shows that Eq.
(2.3) represents an adequate approximation for all relevant
ratios of chain lengths. In addition, Fig. 1 also illustrates the
adsorption preference of the long chains. As in experiments
[1], the preference is more pronounced in more dilute solu-
tions. At°=10"° a chain length difference of 20% reduces
the contribution of the short chains to the total adsorbance to
below 10%, whereas it is close to 40% ¢=10"2. Cer-

we want to compare our analytical expressions in the nextainly, this latter volume fraction is an upper limit for a dilute

subsection.

2. Comparison with the Scheutjens-Fleer theory

polymer solution becausg® has to be smaller than the over-
lap  concentration  ¢*~(N$" " 1+NS H a1
=1/(N1+N5), which requiresN; to be less than 100 if

In Ref. [6] Fleer discusses the structure of the adsorbedﬁozlo 2.
layer of a multicomponent mixture in the ground-state ap-
proximation and compares the results with the numerical so-
lutions of self-consistent-field calculations. For the adsorp- Since, is proportional toy, and ¢,= ¢,, the loop and
tion of two polymers differing only in chain length he finds the tail concentration profiles of the two types of chains are
for the total adsorbandaising our notation; see E¢R0) of  proportional to each other inside the adsorption layer. Using
Ref.[6]] Egs.(2.16), (2.22), and(2.26 one finds for the loops

3. Concentration profiles of loops and tails

— — 0 0 T
F=Ta+12=Brl d1expNe) + dzexaNze) ] Bl = VD) = CRAD = (), (234

where the factoBg is taken to be 6 in numerical applica-

tions. Solving this equation fo¢ and settingl’=1 [6] one
obtains

1
1+ =

N;e=—In| Bg¢?
ek

and for the tails by virtue of Egs(2.18), (2.19, (2.22),
(223, andKl/Kzzclz,

D12 2) =Boihn(2) po(2) = E(bt,l(z)- (2.39



N,/N;. These ratios coincide witkp, ,/ ¢, and ¢,/ ¢, due to
Egs. (2.34 and (2.395. In this figure the same bulk volume frac-
tions, ¢°=10"2 and ¢°=10"°, have been used for both chains,
andb? was taken to be 6.
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T and(2.21), which are the same as in the monodisperse case
1.00 }
, [10]:
— T,T,¢=10"
= N,T,/N,T,, 6°=10"
0.80 s I, R=10° J V2 1.1
—-— NN, =10 /’ W2)=—; <P(Z)=§22|n2 for b<z<l, (2.39
~. 0.60 ;
Z { 3603 z°
L':I ; Y(z)= T; o(2)= 1_8 for |<z<, (2.39
Z, 0.40 //‘I 1
[:‘; 4 E z
' 0.20 . z/;(z)zconstxvexp{—x . @(z)=\? for A<z
P (2.39
0.00 - 1 .
. [Formally, the monodisperse results of Ref0] can be re-
0.0 0.5 1.0 : o o . .
N,/N, covered in the limitC,,—, which is realized either by

¢g—>0 or by (N;—N,)—.] The resulting concentration
profiles for loops and tails are compiled in Table I. In a dilute
solution the adsorbed chains also determine the overall con-
centration profile outside the adsorption layer up to a dis-
tanceD;~N;/\>R;, whereas free chains dominate further
away from the wall. Since the free chains are expelled from
the layer, their profile gradually increases towards the bulk
concentration foz>\. Due to this opposite behavior of the

FIG. 2. Variation of the ratio$', /T"; andN4I", /N,I"; with the

The ratios of the two loop and chain prof;Ies are plotted ingdsorbed- and free-chain profiles the overall concentration
Fig. 2 as a function ofN,/N; for b°=6 and ¢; profile of the short and the long chains exhibits a minimum.
= o=¢"=102,10 ®. As N,/N; decreases, the long poly- As in the monodisperse case this minimum is shallow and is

mers progressively expel the short chains from the wall angbredicted to lie aD; for the long and aD, for the short
form the majority of the loops. This expulsion is more suc-chains.

cessful in more dilute solutions. Whereas the ratio of the Equationg2.36—(2.39 show thaty(z) rapidly decreases
loop profiles (i.e., I';/I";) only decreases gradually for with increasing distance to the wall. Therefore the constants
#°=10"2 and even stays finite for very small values of K; and the adsorbancés can be approximated by E(@.36)
N, /N, it is already completely negligible &,/N;~0.5if  very well[10]. For K; one obtains

¢°=10"5. This behavior reflects the strong amplification of

the adsorption preference by diluting the solution, which is Cys o Cio [
also observed in experiments]. Contrary tol',/T"; the ra- K =—f dz (Z):—f dzy(z)
perimerts Y 1or2/T T g )o T e

tio of the tail profiles passes through a minimum upon de-
creasingN,/N;. This minimum is well pronouncedat

(0.343, 0.505) for ¢°=10"2, but very shallow and there- _ Cp 3 I
fore invisible[at (8.31x 10 2, 1.96x 10 %)] for ¢°=1075, T Jirc, 2ln,
which is another consequence of the adsorption preference. 12 (2.39

The existence of this minimum and the subsequent increase
of ¢,/ ¢ means that most of the tail monomers belong to

1o 1 I
short chains ifN,/N; becomes small. Ky=———\2In— (2.40
In addition to these general relations between the profiles SN Ci, b

one can also immediately obtain their spatial variation, since
thez dependence af; andg; is determined by that af and  where the lower bound of the integral was replacedbby
¢. As mentioned above, these functions satisfy E8sl7)  This amounts to changing the variakdeto z+b for z<l,

TABLE I. Concentration profiles for loops and tails if both chains are much larger than the size of the
layer, i.e.,A<R,<R;. The profiles are calculated from Eq®.16 and (2.18 by virtue of Eqgs.(2.36—
(2.43. Only the profiles for the long chains are given, since those of the short ones can then be deduced from
Egs.(2.34 and(2.35.

b<z<z* PARSY AN A<z<Ry,R,
i1 ry _22 I'; 1800¢*)° (consi? T, (z*)® JZ
Tz r 2z 72 T 8 07
b1 1 4z | z 1 Eg 1 (:onst>< z
_z
TIN(NCS) ()3 12737 1+Ni/(N.CD) 22 TN (NCS) N2 X
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FIG. 3. Dependence of*/N}? on N,/N; for N,=1C,
$"=10"2, andN,=10%,1C°, ¢°=10"8. As before, we additionally
useb?=6.

which was justified in Ref[10] to correctly account for the
boundary condition ofy close to the wall. Similarly, one
finds for the adsorbances

2

2. <
M=1 e fdzwu Cerp (24
r —1 2 2.4
27 1+C%,b’ (242

which vyields for the total adsorbandé=T1";+T,=2/b. In
this calculation a term of orderIl¥vas neglected, since the
hitherto unspecified length scaleis strongly chain-length
dependent. If one uses the above derived resultfand
I'; in Eq.(2.19, | can be calculated from Eq2.24) as

1 NiNob(1+C3) |
=sap 7 o In—.
252 N,CZ+N; b

Inserting the right-hand side of this equation into the argu-
ment of the logarithm and ignoring a factor of order

In[In(I/b)] one finds

|=: Wz*
1 [Nyb(1+C%) N(1+Ciy [\*°
T 2UB 1 N,CHN, | (1+N,CoNB2 ||

(2.43

The identification ofl with the crossover length from the
loop- to the tail-dominated regime is legitimate, singds
much larger tharBe (and thus¢> ¢,) for z<I [see Eq.
(2.36], whereas the opposite is true 16z [see Eq(2.37)].

Equation(2.43 gives the chain-length and concentration

dependence af*, which is exemplified in Fig. 3 for repre-
sentative values oN, at ¢{=¢5=¢°=10"2,10°. The
choicesN,=10? for ¢°=10"2 andN,=10° for ¢°=10"°
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dilute, i.e., if $°<¢* (see above The figure shows that
Z* increases with the chain-length disparity, the diluties-
pecially at small values dfl,/N,), and the size of the short
chains. If N,=10?, z* rapidly becomes larger thaR,,
whereas small values &f,/N; are needed for* to exceed

R, whenN,=10CP. This shows on the one hand ttgit is in
general a large quantity so that the neglect of the term of
order 1I in Egs. (2.4) and (2.42 is justified, and on the
other hand that the length scalgs and R, are not well
separated in practice. Therefore it remains to be shown by
computer simulations or experiments to what extent the
above derived asymptotic laws are in fact observable.

B. One chain is smaller and one larger than the size
of the layer: R,<\, A<R;

The discussion of the preceding section showed that al-
ready a small difference in chain length can entail a substan-
tial adsorption preference for the longer chains in a dilute
solution. Since the chain length disparity is very large in the
present case, one can thus assume that the properties of the
adsorbed layer are exclusively defined by the long chains.
They create the potential which determines the thermody-
namic behavior of the short chains. Depending on the size of
the short chains one can distinguish the following two cases:

2/72
20172

for b<R,<z*

U(2)=s(2)= 7+ <Ry<\

(2.44

for

where the potential and the crossover lengjthare given by
the monodisperse resqit0] (i.e., by the limitC,,— ). This
choice therefore assumes a situation in which the small
chains attempt to adsorb through a layer formed by the long
polymers. In order to study the adsorption behavior under
these circumstances one can no longer work with(Ed.4),
since the given expressions f&f, and Z; are only valid
asymptotically forR,>\. Instead, one has to solve EG.2)
using Eq.(2.44.

1. Short chains are smaller than*z b<R,<Zz*

Introducing the Laplace transforr;Z‘z(E z), with respect
to n one can write Eq(2.2) in the following form:

2z, -
—Z2[U(2)+E]Z,=—1.

7z (2.49

With U(z) given by Eq.(2.49 this equation is solved for the
total and the free-chain partition function in Appendix A.
From these results one can derive the partition function of
the adsorbed chains. Fbk(z) = 2/z the solution igsee Eq.
(A12)]

b 1++E(z+b)
z+b E(1+EDb)

X exp(— VE2)[1—Ei(— VEb)exp(VEb)]
(2.4

where Eifk) is the exponential integral functidi7]. Since

Z,4E,2)=

are certainly upper bounds if the solution is assumed to be<R,, VEb<1 so that one can write
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1+E(z+b) 1 z+b
E(l+JEb) E . VE
and
[1-Ei(— VEb)exp(VEb) ]~ ~In\Eb,
which then yields
'éa,z(E,z)~ In\/Eb J— exr[ JEz].

(2.47)

Approximately, the inverse Laplace transform of E.47)
is

2
Z,4Ny,2)=In b 77D

(2.48

. z+b z2
——exp ——]| |.
\’7TN2 4N2

This approximation is correct in the vicinity of the wall, but
becomes unsatisfactory in the cutoff region of the layer.
Since the adsorbance is primarily determined by small loops
close to the wall, one can use E{R.48 to obtain the
leading-order result for the adsorbance of the small chains

[see Eq(2.10],

VN |?

P3| dzz N, 2= b i (2.49

3079

increases with increasing chain length and that the concen-
tration of the short chains is negligibly small &t R,, i.e.,

b N
$ad M)%?{Wlng
2

On the other hand, free short chains from the bulk also enter
the adsorption layer and contribute to the short-chain con-
centration profile. Qualitatively, one expects the free chains
to penetrate up to a distance where the mesh size of the layer,
which is essentially determined by the concentration profile
of the long chains, becomes comparable to their radius of
gyration R,. Hence the concentration profile of the free
chains is reduced by a factor of order 1zatR, with respect

to the bulk valuegS. Since additionally the concentration of
the adsorbed chains is very smallzat R,, the total concen-
tration profile of the short chains should exhibit a minimum
in the layer.

To test this idea let us calculate tlimitial) decrease of
the free-chain profile when entering the layer from the bulk.
Using again the approximatiofEb<1 one finds from Egs.
(A8), (A9), and(All) (see Appendix A

2

<) (2.52

_ 1 1
Zio(E,2)~ E 2EE|( \/Ez) 1—T exp[\/Ez]
1 JE 1 JE
_EEI( Ez) l+\/—?z exd — VEZ].
(2.53

If one expands the exponential integral for lamythe initial

The same result would have also been expected on the baslecrease of the partition function is

of Eq. (2.195. Since Ny,e<l in the present case,
I',~ ¢SbK3/2, which yields Eq(2.49 when replacing by =17 9
R, and ignoring the prefactor in Eq2.40. That the latter Z,(E2) ~ E EZ

manipulations are legitimate comes from the fact that the
ground-state approximation can be applied as long ag, yhat the free- chain profilgobtained from the inverse

Z<R,. 2
In addition to the adsorbance the concentration profile Otlg\pl)(laasczstransform of Zf»Z) , as beforg asymptotically be-

the adsorbed chains can be calculated in the same approx
mation. Since the Laplace transform of EQ.5) is propor-

z>1
tional to (Zayz)z, the approximate inverse transform of the 7 ~ &% 1 N 25
square of Eq(2.47) gives $r2(2) ~ &2 2| (2.54
ol VN2 2 2 z This result can be rationalized as follows: The concentration
$ad2)~ 5| In b 7+ b erfc N, profile of the free chains is proportional to the probability of
2 entering the adsorbed layer, which is in turn proportional to
b2 [ (z+b)2—2b2 7 the Boltzmann factor eXp-F/kgT]. Since the free energy is
- — >— |erf (approximately given byF/kgT~N,U(z) =2N,/z?, we ob-
N, (z+D) \/—2 tain
2b% | z+2b 22 0
L S | br2(2)~ d9exi —NoU(2)], (259
JaN, | (27 D)2 ”( N, | (20

which gives Eq.(2.54 in the limit z>1. Numerically, Eq.
where erfck) is the complementary error functi¢h7]. This  (2.55 provides a good description of the behaviordgh, up
equation shows that the concentration at the wall, to the minimum of the total concentration profile so that one
) can use this equation and the leading expressionpfgrto
| \/N—z assesZin- Approximating therefore the total concentration
HT ) (25])

0
$a40)~ ¢2 profile by
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Do(2)~ pad2)+ P o(2) (2.56 before and fix the integration constant for the partition func-
’ ' tion of the adsorbed chains by requiriti, , to equal[see
|, \/N_2)2 b \? f ( 7 ) Egs.(2.14), (2.36, and(2.40]
~ n erfc
2 b +b JN, b 1<t g
o, 24Ny 2)= 5 Ka(2) ~ bl —,
+exp — — (2.57
z which gives
yields z,,,<R5, as expected. The ratm,,;,/R, is found to 711
slowly decrease with increasiri®p. Additionally, Eq.(2.57 A,_=b InF = (2.61)

shows that almost total depletion occurs at the minimum for
reasonable chain lengths. Laplace transformation and integration then yield

2. Short chains are larger than %: z* <R,<A\

* 12

(2.62

<z __ 4,0
In this regime the short chains also feel the potential for '35 ~¢zb |ng

z>7*. In order to derive the corresponding partition func-
tions, U(z) = 2/z> must be replaced by (z) =20/z%, but oth-  With this result the total adsorbance is given by
erwise the same methods can be used to solvéZ4p (see

Appendix A). The result for the partition function of the gt < o 2
adsorbed chains {See Eq(A16)] Po=17" 415 = dab In

*

|nF+1o}~r§<Z*.

~ 45 105 105 (2.63
ZdE D= e | It g Y g2t s T 2

As in the previous case, this equation coincides with the
expectation from Sec. Il A. This could have been anticipated
Xexq — \/Ez]- (2.58 because the arguments given in the discussion following Eg.

. . . —— (2.49 also apply to the present case whdRg>z*. If
Formally, the integration constant in E(.58 is given by X . .
the difference of the integration constants for the total andQ2>_Z*’ the mtegrgI. qf the* ground-state 0e|ge2nflinct|on 'S
the free-chain partition functions, i.e., byA,_ dom_lnated by th_e \./'Cm'ty OF" 50 thatl’,~ ¢ In*(z*/b) to
—A_—A_. However,A_ andA;  cannot be determined Igadlng or.der..S|m|IarI.y, one expects that the total concentra-
via the cénditions(AZ) and (A3) becauses>z*>b. To fix  Hon profile  is _dzommated by the ground_ _state, 1€
A, — nevertheless one can argue that an adsorbed chain in tﬂsé(z)% ¢a2(z).oc.z ' cloge tq the wall _and exhibits a mini-
regimez<R, does not feel whether its radius of gyration is mum, the position of which is proportional ;.
smaller or larger thain so that the results of Sec. Il A should
be applicable. This amounts to requiring the smalehavior 1. SCALING APPROACH
of Eq. (2.58 to equal[see Eqgs(2.14), (2.37), and(2.40]

Whereas the mean-field theory is only practically relevant

<z z*|b(z*)® for (nearly ideal solutions, the aim of the scaling theory is to

Za4N2,2)~ 5Kay(2) ~ 30 In-|—7—, extend the description to good solvents, where the excluded-
volume interaction is important. This section therefore re-

which yields considers the structural properties of the adsorbed layer by

scaling arguments. The first subsection examines the loop
and tail profiles, whereas the second discusses the adsor-
bances and related quantities.

*

— |b(z*)E. (2.59

2
Ay_=s|In b

7

If this result is inserted in Eq(Al) one can calculate the

o . ) A. Loop and tail profiles
contribution of the regiorz* <z to the adsorbance, i.e.,

Originally, the scaling theory of polymer adsorption was
* ° developed by de Gennd44]. The theory starts from the
I3 <?=¢9 | dzZ,4N;,2) : ;
2 2 ) a2AN2:4)- assumption that the structure of the adsorbed laykcially
identical to that of a semidilute bulk solution. The structure
Integrating Eq.(2.59 first and performing then the inverse of a semidilute solution is characterized by the blob sjze

Laplace transform one obtains which depends on concentration @s-¢~"/(@~1) [15],
. whered is the space dimension amds the critical exponent

2 <z 104 InZ—. (2.60 of the order-parameter _correlation Iength/_:(O_.588 ir_1
2 2 b d=3 for polymers[12]). Since¢ decreases with increasing

_ o ) distancez, to the wall,& must increase witlz. As long as
To estimate also the contribution from the regmz* the b<z<\ < RZ!Rl’ de Gennes Suggested that it is the On'y

results of the preceding subsection cannot be applied dielevant length scale so thétz)=z=n" [14]. Hence
rectly, since the integration constants were determined by

assumingz* to be infinite. However, one can proceed as d(z)~z 9T, (3.
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which gives back the mean-field resuks(z)~z 2, for ~d(2)= ¢ 1(2) + 1 o(2), If z>27*. The self-similar struc-
d=4 andv=1/2 (see Table)l ture of the total concentration profile then entails in analogy

However, the preceding discussion based on mean-fielth Eq. (3.2
theory suggests that there exists an intermediate length scale

z* and that the power-law behavior of E®.1) should only beu(2)~ E(z*)*”l’y z dea
be observed if either<z* or z>Zz*. If one assumes that the t1 N, z*
mean-field predictions remain qualitatively valid under good

solvent conditions, for instance, that the loops also dominat@nd

close to the wall, one obtains Cdt

I z
biA2)~ N_Z(Z* )1 , 3.5

Z*

H(2)=P(2)=p11(2)+ Py o(2)~2 I

SinceR; andR, are larger than the thickness of the layer, thewhere the prefactors were determined by requiring the tail
loop and tail partition functions of the short and the longprofiles forz>z* to equal those foz<z* atz=z*. Since
chains are identical for<\. This implies for the loop con- the profiles for the short and the long chains are proportional

centration profiles of both chains to each other, the results of the monodisperse case can be
applied. This implies for the loop profiles in the region
h12(2)x P o(2)~2 I if z<z*, (3.2 z>z* [10,11

Since ¢, is proportional to ¢;,, the condition z |yl
'~ [5dze(z) quite generally yields

Bi1(2) = i p(2)~ (%)~ , (3.9

7*

r, where vy is the critical exponent of the susceptibility
b12(2)= F—l¢|,1(2)7 (y=1.162 for polymers ird=3 [12]). Equation(3.6) coin-
cides with Eq.(3.2) at z=z*. These results foe<z* and
i.e., Eq.(2.34. Additionally, a comparison of Eq3.2) with z>7* show that the total loop and tail profiles may be writ-
the scaling theory of Ref§10,11] reveals that the individual ten in terms of a scaling function asé(2)
loop profiles behave as in the monodisperse case so that thez*d“’vgb,,t(z/z*) and thatz* is the relevant length scale
results of Refs[10,11 can be used. More precisely, this in the universal central region of the adsorbed layer.
implies that the tail profiles are given by The preceding discussion appliesRi and R, are both
larger than the thickness of the adsorption layeRJ& A\,
the short chains are almost completely expelled from the
layer and the lengths* and\ essentially agree with those of
(3.3 a monodisperse layer which is formed by the long chains
only. In this case the previous formulas for the concentration
if z<z*, which yields the mean-field result for=1/2.  profiles of the short chains remain valid up to the cutoff
Equation(3.3) also shows that lengthR,.
Additionally, the total concentration profiles of both the
short and long chains are expected to be nonmonotonic, as in
mean-field theory.

r r
bu(D~ oz HWand gz~ L
’ Ny ’ N>

biA2)= m bi1(2),

which coincides with Eq(2.395. Therefore Eqs(2.34) and B. Adsorbances and related quantities
(2.35 do not depend on the mean-field approximation, but
are quite general results.

Since the loop profile decreases and the tail profile in
creases with increasirg there must be an intersection point.

This intersection point defines tiiep to now undetermingd chemical potentialgiags anduso; . To calculate the chemi-
crossover lengtia* [10,11]. Requiring the total loop and tail cal potentials an expression for the respective free energies is

files to b | a* ie.. %\ _ ) Egs. (3.2 needed. Since there are;/N; indistinguishable self-
2;%22_33) (;)/iekej equa e, $i(Z) = 4(2"), Egs. (3.2 avoiding polymers of specigsin the bulk solution, the free

energy is given by

The adsorbances of the two polymer species are deter-
‘mined by the equilibrium condition between the adsorbed
layer and the dilute bulk solution, i.e., by the equality of the

¥ = , (3.9 In(N?~ 1),

whereC2,=T",/T',, as before. Up to a logarithmic factor and (3.9
numerical constants this result agrees with Eg43 when  where the first term is a chain-length independent contribu-
choosingd=4. tion which contains the monomer partition function, the sec-

The opposite behavior of the loop and the tail profilesond term accounts for the entropy of mixing, and the last
suggests thatas in mean-field theojythe loops only domi- term, the so-calle&nhancement factporiginates from the
nate as long as<z*, whereas the total concentration profile partition function of a single self-avoiding chain. Equation
is determined by the tail contribution, i.e.(2) (3.7) implies for the chemical potential

Ny(1+C) r“d‘”

— ¢ (B b
(1+N,C3/Ny)T Fso|,i(¢?,Ni>=Fso|,i<¢i°>+Wiln( )

Nie/ N
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dFgq; 1 ¢? 1 Requiring now thatags = sol,1 @3N fads 7= Msol,2, aNd sub-
tsoi=gg0 T M N T RNINTTD. (38 stracting the resulting equations the ralig/T', can be ex-
! ! ! ! pressed as

to estimate due to the contribution of the loops. In the inter-
facial region there ar€’; /N; indistinguishable self-avoiding
chains of species, each of which has two tails and am-
known number of loops. Due to this unknown number the Where €= (dFso1,1/d7) — (dF g /dl'1) = (dF 50,2/ d$5)
contribution of the loops cannot be estimated from the loop_ (dFads,ZdI'2). This equation coincides with Eq2.26) in
partition function contrary to that of the tails. In analogy to the mean-field limit(i.e., y,q—y=1). However, also in

Refs.[10,17] one finds that the partition function of a tail is 900d solvents the chain-length-dependent prefactor is always
given by close to 1 for any reasonable choice of the ratidN,, since

v24— v~0.0255. This means that the effect of the excluded-
Z,(n)~nr1d-2D2-1 for j=12: z<z* (3.9  Volume interaction is to renormalize the adsorption energy,
' whose chain-length and concentration dependence we want

and by to estimate now.

To calculate this dependence one can follow the lines of
nl-vd-1-1 argument of Sec. Il A 1. In addition to the ratio, /T, also
e one of the individual adsorbances, day, is needed. Using

the equilibrium conditionugs = tsol,1, @gaiN one obtains

The chemical potential of the adsorbed layer is more difficult r, ¢° ( N,

Y2d— Y
=4 N_z) ex (N1 —Ny)e], (3.149

Zt’i(n)"’(n* )('y* v[d—2])/2—1

for i=1,2; z>2z*, (3.10

I'2N;

Cc
.N, exdaN;e], (3.19

1+

I=(¢)°N}

wheren* =(z*). The prefactor foz>z* is determined in
such a way that Eq93.9) and (3.10 coincide forn=n*.
Using these results one obtains for the chemical potential gtnd from that by virtue of =I";(1+I',/T;)
the two tails of a chain

1 0\a 0 N Yod— Y
1 N; 2 Nl€:_5|n|:(¢]-}) N?(l"’%(l\l—z)
Mt,i(ri,Ni)z_nm( J'o ant,i(n)) A
|
N
1 xex;{—(l—N—z)Nle”
~— Wln(n*)yf”(dfz), (3.12) 1
! —a g N, Y2d—7v~1
. . . . . . +—In{ 1+ —|
since the integral is dominated by the vicinity aof if 1\ Np
Z*<R;. N
To estimate also the loop contribution to the free energy . N2
one can assume that it primarily arises from the small loops X ex 1 N Niel |, (3.16
inside the proximal regiorz<b. As the adsorbed layer is
(usually fairly dense in the vinicity of the wall, one can where the abbreviations a=v(d—1)/(y+v),
further assume that thganishingly smallloops behave as if b= (y—v(d—2)+v»(d—1)[ yoq— y])/(y+v), and c=(y
they formeda two-dimensional meltFor two-dimensional —3[d—2])/(v+y) were introduced. Since/=1.162 and

melts Duplantier showed that, though the exponendkes 1=0.588 ind=3, the exponenta, b, andc have the values
the classical value=1/2, the susceptibility exponenby is  a=~0.672, b~0.345, andc~0.328, whereasa=1, and
nontrivial, i.e., y,q=19/16[16]. Taking this result into ac- b=c=0 in the mean-field limit, i.e., ifv=1/2, y,q=y=1,
count for the enhancement factor the free energy of the loopand d=4. For the latter choices di, b, andc, Eq. (3.16
becomes in analogy to E@3.7) gives back the mean-field resy.27).
As in mean-field theonfsee Eq.(2.27)] the adsorption
N T _1 energy has to be determined self-consistently. In order to
FrLi(l N ~Fagsi (%) + ﬁiln<|\|_ie> B ﬁiln(Nim ), derive an approximate expression fotet us assume that

(3.12

B2 [Na| 20772 N,

- : - - === —|1-="|Nje|<1
where F 45 is @ chain-length independent contribution re- " Nl) exp{ ( Nl) 1 ,
lated to the partition function of an adsorbed monomer. This
yieldS for the chemical pOtential of the adsorbed Iayer which require&ﬁg/qsgg N2/N1$1 Then the |eading contri-

bution of Eq.(3.16 is
CdFas 1 (I 1 ya1
Maasi =g TN T N ) °
' ' ! ! Nie=—In mNﬂ, (3.17
1
- Wln(n*)y’”d’z). (3.13

i which, when inserted in Eq3.16), yields
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Nlem—lm{((ﬁg)a[\jb 1+ 2 Np| 72077 which yields forN,/N;=1
a r 1 #0\N; 0
¢2 ba 1-Njy/Ng %: ﬁ'
X F[gNl :| )} (318) 2 ¢2

This equation coincides with Ed2.27) in the mean-field and forN,/N;—0

limit, but depends explicity onN; (and not only on

N,/N;) under good solvent conditions. If E¢3.18 is in- Iy B3 [N, 72077
serted in Eq.(3.14 one obtains for the ratio of the adsor- F_z_ T1& N_1
bances
b/ B9 [Ny 7277 bla V) —1
- - a
E:ﬁ(&)m 7{(¢2)aNb(l+¢;g<&)m ! XN | ) N1 :
Lo ¢35\ Ny I A
&° 1=Nz/Np\ 1=(1=Nz/Ny)/a Using the latter result the ratioB;/I" and I',/T" can be
X F—l}aN?/a ) , (3.19  expressed as
|
Fl ¢g N2 Y2d—Y ba ¢g N2 Yod— Y o/a 1/a) -1
?—{1+F—1/a N, Ni™| 1+ t1m N, N3 : (3.20

I, (@UTYB)(N,/Np) 7207 INDA 1+ (pUTY2) (N, /N, ) Y24~ YNB/A L

T 1+ (AT (N /Ny) 720 INYA[ 1+ (HUTV2) (N, /Ny) 720~ INGA] R

(3.2)

if N,/N;—0, whereas the mean-field resulise., Eq. which extend the mean-field and scaling approaches to prop-
(2.32] are recovered foN;=N,. erly account for the contribution of loops and tails to the
If the radius of gyration of the short chains is smaller thanoverall concentration profile. A central result of this exten-
the size of the layer, but larger thaf, the discussion pre- sion is the appearance of a new length selavhich sepa-
sented above remains valid. HoweverRif<z*, the contri-  rates a loop-dominated regime closer to the wall from a tail-
bution of the tails to the chain’s free energy must be calcudominated one farther away from the wall. This length scale
lated from Eq.(3.9) alone. In analogy to Eq3.11) one then  js also found in the present work. It increases with the size

finds ratio of the short and the long chains, the dilution, and the
N N, chain lengthN, of the short chains.

_2|:t2(I‘2,N2): —2In( f dn[n~ v[d2])/21]> The main results of the paper may be summarized as fol-

P 0 lows. (i) Long chains are adsorbed preferentially, and the

~ N} nd-2) (3.22 adsorption preference becomes strongly reinforced when di-

luting the solution or decreasing the rahig /N;. (ii) If both

Determining from that the free energy of the adsorbed |ayep2ains are Iargicer than _the S'Zle gf the aﬂsol_rbed I_ayer the f
and balancing the resulting chemical potential with that of2dSOrption preference is mainly due to the linear increase o

the bulk solution, one obtains for the adsorbance of the shoi‘fe a_ldsorption free energy per ghain with chain Ie_ngth. Ll
chains etails of the concentration profiles only have a minor influ-

ence[see Eqs(2.26 and (3.14]. In mean-field theory the
FZZ¢0N72d_V[d_2]quN26]:¢ON72d_V[d_2] ratio of the adsorbance$;,/T",, depends only orN, /N4
272 272 ’ (3.23 [see Eq.(2.29], whereas an additional absolute dependence
' on Nj; is found by the scaling analysjsee Eq.3.19]. The
where we assumeb,e<1 as in mean-field theory. Since l00p-and tail-concentration profiles of the short and the long
the value of the exponent in this equation is numericallychains are proportional to each other inside the adsorption
close tor=0.588][i.e., y,q— r(d—2)~0.6 ind=3], the ad- layer and exhibit &shallow minimum outside the layer. The

larger than the respective radius of gyration. It is located at
1-1/v ) 1-1/v P
IV. SUMMARY AND CONCLUDING REMARKS D;xNjA >D,c Ny [19]. (iii) If the short chains

are smaller than the size of the adsorbed ldwdnich is then
This paper discusses equilibrium properties of the comassumed to be formed by the long chains gnhut larger
petitive adsorption between two polymer species of differenthan z* the preceding discussion remains valid except that
length by mean-field and scaling theories. The employed thethe concentration profiles of the short chains are cut off at the
oretical methods are based on recent developmdft4d1] radius of gyrationR,. Therefore the minimum of the short
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chains’ total profile moves inside the adsorption layer andoy a comparative infrared spectroscopy study of deuteri-
becomes more pronounced s decreases. Additionally, as opolystyrene and protiopolystyrend8]. As long as the
in the case where both chains are larger thanscaling length of protiosample did not considerably exceed that of
theory predicts that the adsorbance of the short chains e deuterated polymer the stronger interaction of deuteri-
almost independent dfl,, but depends explicitly oi; un- opolystyrene with the silicon oxide surface favored its ad-
der good solution conditions. Approximately, it is propor- sorption. This behavior could be reversed if protiopolysty-
tional to ¢3N%/2 [see Eq.(3.21)]. This scaling result is in rene carried a highly attractive carboxylic end group. Then
contrast to the mean-field prediction which yields a logarith-the chain length of the deuteriospecies had to be larger by a
mic dependencgsee Eq(2.63)]. (iv) If the short chains are factor o'f about 80 to significantly suppress the preferential
smaller tharz* the minimum of the total concentration pro- adsorption of protiopolystyrenid8]. Those and comparable
file is strongly pronounced and the adsorbance shrinks té-€- block copolymers with blocks of different adsorption
roughly 'y~ ¢SR2 [see Eq.(3.23]. Again, the explicit de- ability, etc) energetic effects can be incorporated in our
pendence of , on R, is a scaling prediction, whereas only a theoretical framework and are therefore prospective topics of
logarithmic dependence is expected from mean-field theorfHture work. _ . _ -
[see Eq(2.49]. (v) The excess amount of monomers in the . Another interesting topic is t_he formation of the equilib-
interfacial region is dominated by the immediate vicinity of lUm layer. Since the small chains move faster than the large
the wall, i.e., by the loops, irrespective of whetts is ~ ©ON€S, oneé expects them to be adsorbed first at the wall. How-
smaller or larger than the size of the adsorbed layer. TheréVe" in thelvery) long time limit they have to be replaced by
fore our mean-field results compare very well with the nu-the large chains. Thegretlcal stgdlgs on monod_lsperse layers
merical solution of the Scheutjens-Fleer theory. [20] as well as experiment1] indicate that this replace-

In principle, it is possible to extend the present theory toment is a rather slow process. How the replacement occurs

continuous polydispersity distributions, as they often occufind which dynam|c_prope_rt|es determine the layer formation
in experiments. Experimental distributions usually exhibit alS What we want to investigate next.

vanishing tail of (very) long chains so that dilution and

chain-length effects may then strongly compete with each ACKNOWLEDGMENTS

other. To get a detailed insight in the competitive adsorption
thermodynam|cs, numerical Investigations are presur_nablviding us, prior to publication, with the numerical data of his
required. However, at the mean-field level, a crude estimatgg ¢, nsistent-field calculations, which were compared with
may be obtained by neglecting chain end effects and therebé{ur theory in Fig. 1. J.B. is indebted to the Deutsche Fors-
logarithmic factors(ground-state approximatignThis as- chungsgemeinsc.ha(f.IDF.G). for financial support of this work
sumption certainly overestimates the contribution of theunder Grant No. Ba 1554/1-2

small chains, but is a convenient starting point to gain a first ' '

idea. Let us further assume that the polydispersity distribu-

tion is narrow. A narrow distribution results, for instance, APPENDIX: SOLUTION OF EQ. (2.49

from anionic polymerization and can be mimicked by a |f the radius of gyration of the short chains is smaller than
Gaussian distribution with meaiN) and standard deviation z* the potential is given byJ(z)=2/z? [see Eq.(2.44)].

o=(N)(P-1)"? whereP=(N?)/(N)? denotes the polydis- \jith the help of the Laplace transform,
persity. If this(weakly) polydisperse sample is exposed to an "

attractive wall one expects that the average chain length of EZ(E,Z)ZJ dnz,(n,z)exd —En],
the adsorbed chaingN),, is larger than the bulk value, 0

whereaso essentially stays the same. Roughly, one findsq. (2.45 takes the following form:
(NYa~={(N)(1+ (P—1)In[1/¢°b?]), where ¢° is the total 23 T2
monomer concentration in the bulk. This result also holds for _22 —|+E
the often used Poisson distribution. On the other hand, for 9z z
highly polydisperse samples, as obtained by radical polymemwhere the boundary conditiog,(0,z2)=1 was used. After
ization, for instance, the adsorption is dominated by the largtaplace transformation the other boundary conditions give
est chain lengths of the distribution. Certainly, these predic-

We are especially grateful to Professor G. Fleer for pro-

Z,=—1, (A1)

: . . . ! 92,(E,2) 1~

tions are fairly rough, since the experimental sample contains —= | =—ZZ,(E,b), (A2)
many short chains whose weight in the layer is overestimated 9z b b

by the presented arguments. However, these examples sug- Iimzf,Z(E,z)=O, (A3)

gest that a very narrow, but still realistic distribution behaves

as a monodisperse sample with a slightly higher average

length of the adsorbed chains, at least at moderate dilutiongnd
In the present work the two polymer species differ only in o~ L~ 1

length. No disparity in interaction energy betwdgarts oj lim Z5(E,z) = lim Z; 5(E,z) = E (A4)

the chains and the wall is considered. Those enthalpic effects e e

can, however, be important in practice. For polymers ofThe boundary condition$A2) and (A3) are evaluated at

comparable length one expects that the species, which inter="b instead of az=0 because the form of the potential that

acts more strongly with the surface, adsorbs preferentiallyve use diverges a&—0. Since Eq(A1l) is invariant under

[1]. That a higher interaction energy can, to some extentthe transformatiorz— z+ b, this procedure is legitimate and

even outweigh a difference in chain length was pointed outnay be reversed by replaciagvith z+ b in the final results.

z—b
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In order to solve Eq(Al) we first determine the general 1

solution of the homogeneous equation Afﬁzﬁ exp(\E) — Ei(\E) + Ei(Eb)
P20 (2 ]~ 2\Eb
—7 | 2+E|Z=0. T J_bexp(ﬁb)

Inserting the ansatz 1_

-1 JEb (—VEb)exp2VEb)|. (All)
Z).(E2)=¢.(E2exd+Ez] and ¢.(E.2) "
Replacingz with z+b, as mentioned before, and using Eq.

i ai (A5) (2.3 one obtains the partition function of the adsorbed
Eo Tk chains
yields Z,AE,2)= Z,(E,2)— Z,(E,2)
~ 1 1 b 1+ E(z+b)
ZNE,2)=A,|1- —|exd VEZ]+A_| 1+ — =
2l 17 Ez HvEz] \/Ez] z+b E(1+Eb)
xexd —E2, (A6) x exp(—E2)[ 1~ Ei(— VEb)exp(VEb)]
whereA... are integration constants. A specific solution of the (A12)
inhomogeneous equation is obtained by the method of the . _
variation of constants In a similar fashion one can also calculate the total, the
free-chain, and the adsorbed-chain partition function if the
~, 1 _E i(—VE radius of gyration of the short chains lies betwe#nand
Z5(E,z)= E 2E[ Ei(—VEZz)+Ei(— VE) \. Then the potential i) (z) = 20/z?. Adding the two homo-
1 geneous solutions,
—exp—+vVE)]| 1- —|exd VEz
1p( VB)] JEz V2] 3 Eo=|15 10 45 _ 105 105
e R B = e i By
+ 5[~ Ei(E2) +Ei(VE) ~exp( VE)] : e B2 BT OE
Xexd = \/Ez], (A13)
x| 1+ ! exd —VEZ], (A7) 1o the special inhomogeneous solution one obtains for the
JEz total partition function
where Eif) denotes the exponential integral functid]. 1 20 280 1
The general solution of EqA1) is therefore Z,(E,2)= E B2 T EAT| AT e JE]
1 . . 10 35 35
Z,(E,2)= = 2E[zEA+ Ei(— VE2)+Ei(— VE) x| 1+ Zm+ = +E37?”ZZ+(E 2)
1
—exp(—VE)]| 1- = exf VEZ] 1 10
1 Ez + A_— EEXF[\/E] 1—ET§
+5£[2EA_ —Ei(VE2) +Ei(VE) —exp(VE)]
35 ~
+———3/§) zY _(E.2). (A14)
1 E E :
X1+ \/Ez exp[—\/Ez]. (A8) Due to the boundary conditiofA4) A, has to equal the
second term in the bracket so that
The boundary conditiortA4) fixes the integration constant
A for both the total and the free-chain partition function to - 1 20 280
Zy(Ez)= =~ =tz | A eXF[\/—]
1 E E<z° E°z
A=Ay =sclexp—VE)-Ei(—VE)] . (A9) 10 35 35
X 1_ET§+ E F,z 22 , (A15)

whereas Eq(A2) yields forA_ of the total partition function

from which one obtains the partition function of the adsorbed
1 chains by
A =5=[exp(VE) ~Ei(JE) +Ei( VEb)
Z.4E2)=Z,(E,2)~ Z,(E,2)=A, - 25 _(E,2).

—Ei(— VEb)exp(2Eb)], (A10) ' (A16)

and Eq.(A3) for the free-chain partition function The integration constak, _ is determined in Sec. I B 2.
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