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Adsorption of a bidisperse polymer mixture onto a flat wall

Jörg Baschnagel,* Albert Johner, and Jean-Franc¸ois Joanny
Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg Cedex, France

~Received 23 September 1996!

This paper studies the thermodynamic properties of the competitive adsorption between two polymer species
differing only in length onto a flat wall from dilute solution by both mean-field and scaling theories. The
employed mean-field approach is based on a recently developed theory for monodisperse solutions, which goes
beyond the usual ground-state approximation to account for the contribution of the tails. As in the monodis-
perse case we also find a crossover lengthz* which separates a loop-dominated region adjacent to the wall
from a tail-dominated region farther away from the wall. This length scale strongly depends on the length of
both chains and is the relevant scaling variable for the loop and tail concentration profiles. The space variation
of these profiles and the adsorbances are discussed in detail. We find a strong adsorption preference for the
long chains, which is very pronounced in dilute solution. This result parallels those of experiments and, in its
mean-field version, can be compared quantitatively with the numerical calculations of the Scheutjens-Fleer
theory @G. J. Fleeret al., Polymers at Interfaces~Chapman and Hall, London, 1993!#. However, mean-field
theory predicts that the adsorbances depend only on the ratio of the two chain lengths, whereas an absolute
dependence on chain length is found by scaling theory. Since the scaling theory extends the mean-field
treatment to good solvent conditions, this qualitative difference between both theoretical approaches should be
observable in experiments.@S1063-651X~97!13402-X#

PACS number~s!: 68.10.2m, 82.65.Dp, 61.25.Hq
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I. INTRODUCTION

Many polymerization reactions generate samples wit
rather large molecular weight distribution. If this polydi
perse mixture is exposed to an attractive wall the equilibri
adsorption involves several stages, depending on the ov
concentration of the sample@1#. At very low concentrations
all polymer chains, irrespective of their length, are adsorb
and the adsorption isotherm, i.e., the excess amount of p
mer per unit area in the interfacial region as a function
concentration, rises steeply. As the concentration incre
and the wall becomes more and more covered, the l
chains begin to replace the shorter ones. During this pro
the adsorption isotherm~usually! gradually increases befor
crossing over to a plateau when the wall is saturated by
large polymers@1–3#. The adsorption preference of the larg
chains~in dilute and moderately concentrated solutions! is
often rationalized as follows@1,5#: When a polymer adsorb
at a wall it loses translational entropy in comparison to
bulk. Since the entropy per chain in the bulk is given byS
}(f0/N)ln(f0/eN), wheref0 is the monomer bulk volume
fraction andN the chain length, large chains lose less e
tropy than smaller chains and are thus adsorbed prefe
tially. Strictly speaking, this argument is not completely co
rect because the loss in translational entropy is not the o
driving force which determines the equilibrium structure
the adsorbed layer. The equilibrium structure results from
balance of the chemical potentials between the free chain
the bulk and the adsorbed chains. The chemical potentia
the adsorbed short and long chains are different due to ch
end effects. How these chain-end effects influence the t
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modynamic properties of the layer is one aspect which
want to discuss in this paper. Despite this proviso with
spect to the simple entropy argument it suggests that
adsorption preference is more pronounced in dilute solut
This expectation is indeed borne out in experiments and
also be understood theoretically by self-consistent mean-fi
calculations@1,4–6#.

The self-consistent mean-field theory, as developed
Scheutjens, Fleer, and co-workers@1,5–7# analyzes the struc
tural properties of an adsorbed polymer layer in terms of
effective single-chain problem. Each monomer of a ch
thereby experiences an average potential consisting of
wall attraction and of the mean-field excluded-volume int
action. Since the excluded-volume interaction again depe
on the structure of the layer~i.e., on the average monome
concentration@8#!, the theory is self-consistent. From the n
merical solution of the resulting equations the various c
tributions of loops, trains, and tails@1# can be isolated. Loops
are portions of the adsorbed chain in which only the first a
the last monomer touch the wall, trains are portions in wh
all monomers are adsorbed, and tails are portions in wh
only the first monomer is in contact with the wall. Train
may therefore also be considered as a sequence of s
loops with a size of the order of a monomer. Close to
wall small loops dominate the structure of the layer, wher
the concentration of the monomers in the tails is negligib
As the distancez from the wall increases the contribution o
the loops to the overall monomer concentration profile
creases, but that of the tails increases. Due to this oppo
behavior of the two profiles there should be acrossover dis-
tance z* , which separates a loop-dominated regime adjac
to the wall (z!z* ) from a more distant regime (z@z* ),
where the tails primarily determine the decay of the mon
mer profile. The division of the adsorbed layer in an inn
and an outer part was suggested by the numerical solutio
ic
3072 © 1997 The American Physical Society
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55 3073ADSORPTION OF A BIDISPERSE POLYMER MIXTURE ONTO . . .
the self-consistent mean-field theory@7# and has also bee
observed in a recent Monte Carlo simulation@9#.

This picture of the structure of an adsorbed layer has b
substantiated theoretically by an extension of mean-field
scaling theories@10,11#. By going beyond the ground-stat
approximation@1# the contribution of the tails can be inco
porated in the mean-field treatment. This refined theo
which is valid in the asymptotic limit of very long chain
only, has been developed for monodisperse systems in
full concentration regime ranging from dilute to concentra
solutions. A central result is the natural appearance of
crossover distancez* and the derivation of its chain lengt
dependence@10#. This distance also appears as the pertin
length scale in the extended scaling theory which goes
yond the mean-field approach by calculating the spa
variation of loop and tail profiles under good solvent con
tions @10,11#. Since the scaling theory yields the mean-fie
results when classical critical exponents@12# and the space
dimensiond54 are used, and since the extended mean-fi
theory quantitatively agrees~in most cases! with the numeri-
cal solutions of the Scheutjens-Fleer theory@13#, both ap-
proaches are indeed compatible and complement each o

Therefore we use the extended mean-field and sca
theories in this paper to discuss the competitive adsorptio
a polydisperse polymer sample. Polydispersity is modele
the simplest–though experimentally studied@1,3#—fashion
as a bidisperse mixture of chains of different length. Sin
we expect the adsorption preference to be most pronoun
in dilute solution, we focus on this case in the present wo
although more concentrated solutions could be treated by
same methods.

The paper is organized as follows. In the first part of S
II we summarize those results of the extended mean-fi
theory which are important for the subsequent analysis,
ply them to the case of the bidisperse mixture, and comp
our findings with the Scheutjens-Fleer theory. In the sec
part we drop the assumption that both chains consider
exceed the size of the adsorbed layer and discuss the ca
which the short chains are much smaller than the lay
extent. Section III complements the mean-field treatment
developing the corresponding scaling theory. Section
summarizes the main results and contains our conclusio

II. MEAN-FIELD THEORY

The mean-field theory of the competitive adsorption
two polymers of different length starts from the followin
assumptions: The polymers are considered as ideal Gau
chains with radii of gyration R1

25(l 2/6)N1 and
R2
25(l 2/6)N2, where the statistical segment lengthl @8# is

assumed to be identical for both chains. These chains e
rience an average external potentialUex/kBT, which consists
of two parts. The first part,Uw /kBT, stems from the short
range interaction with the wall. The impenetrable wall
located atz50 and is assumed to be structureless in
x,y directions so that the distancez from this wall is the only
relevant length scale. The second part,U int /kBT, ~approxi-
mately! accounts for the excluded-volume interaction w
other chains. In mean-field theory the excluded-volume
teraction is given byU int(z)/kBT5vc(z)5f(z), wherev is
the excluded-volume parameter,c(z) the total monomer con
n
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centration at distancez from the wall @8,10#, i.e.,
c(z)5c1(z)1c2(z), and f(z) the total monomer volume
fraction. WhereasUw already vanishes at short distanc
from the wall,U int tends towards the bulk volume fraction
f05f1

01f2
0, if z→`. Therefore it is convenient to defin

the origin of the potential as the bulk state so that

Uex~z!/kBT2f05Uw~z!/kBT1f1~z!1f2~z!2f1
02f2

0

:5Uw~z!/kBT1U~z!/kBT→
z→`

0.
~2.1!

In the following we measure all energies in units ofkBT and
all lengths in units ofl /A6.

One of the basic quantities to analyze the structure of
adsorbed layer is the partition functionZi(ni ,z) of chain i
with length ni with one end atz and the other end lying
anywhere betweenz50 and z5`. This partition function
obeys a Schro¨dinger-like equation@8,10#

]Zi
]ni

5
]2Zi
]z2

2U~z!Zi ~2.2!

with the following boundary conditions.~i! Zi(0,z)51 ~the
partition function of a monomer is normalized to 1!. ~ii !
limz→`Zi(ni ,z)51 ~very far away from the wall the chain
are free Gaussian chains, whose partition function is norm
ized!. ~iii ! ] lnZi(ni ,z)/]zuz50521/b. The third condition
accounts for the effect of the short-range wall potentialUw at
distances larger than its range which is assumed to be o
order of the monomer size. With this stipulation the detai
shape of the wall potential is not important. The only re
evant parameter is theextrapolation length bwhich is in-
versely proportional to the excess energy per monomer w
respect to the adsorption threshold. Therefore condition~iii !
cana fortiori be applied to accurately describe theuniversal
mean-field propertiesof the absorbed layer in the central an
distal region, i.e., forz.b, in which we are particularly in-
terested.

In addition toZi one can also introduce the partition fun
tions of an adsorbed and a free chain, i.e.,Za,i andZf, i . By
a free chainwe mean a chain which does not touch the wa
ThereforeZf, i satisfies Eq.~2.2! with the same boundary
conditions except that the wall boundary condition~iii ! has
to be replaced byZf, i(ni ,0)50. On the other hand, anad-
sorbed chaintouches the wall at least by one monome
SinceZi comprises both the adsorbed- and the free-ch
configurations, it is possible to defineZa,i as

Za,i~ni ,z!:5Zi~ni ,z!2Zf, i~ni ,z!. ~2.3!

Taking the boundary conditions for the total and the fre
chain partition functions into account,Za,i has the fol-
lowing properties: ~i! Za,i(ni ,0)5Zi(ni ,0) and ~ii !
limz→`Za,i(ni ,z)50.

With these partition functions one can calculate the mo
mer concentration~i.e., volume fraction! profiles for loops
and tails. Since the concentration profilef i(z) of a random-
walk-like chain i is quite generally related toZi(ni ,z) by
@8,10#
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f i~z!5
f i
0

Ni
E
0

Ni
dnZi~n,z!Zi~Ni2n,z!, ~2.4!

the decomposition ofZi(ni ,z) in an adsorbed and a free pa
immediately yields the profile of loops

f l, i~z!5
f i
0

Ni
E
0

Ni
dnZa,i~n,z!Za,i~Ni2n,z!, ~2.5!

of tails

f t,i~z!5
2f i

0

Ni
E
0

Ni
dnZf, i~n,z!Za,i~Ni2n,z!, ~2.6!

and of free chains

f f, i~z!5
f i
0

Ni
E
0

Ni
dnZf, i~n,z!Zf, i~Ni2n,z!. ~2.7!

In order to justify, for instance, the identification of Eq.~2.5!
with the loop profile remember thatZa,i(n,z) represents the
partition function of an adsorbed chain withn monomers,
whose one end is situated atz. Since an adsorbed chai
touches the wall at least once and sinceZa,i(n,z) and
Za,i(Ni2n,z) have a common end point at distancez from
the wall, their product must describe a loop.

Using Eqs.~2.5! and ~2.6! one can calculate theadsor-
banceG i , i.e., the total amount of monomers per unit area
the adsorbed layer, by@10#

G i5E
0

`

dz@f l, i~z!1f t,i~z!#5G l, i1G t,i'G l, i . ~2.8!

The last~approximate! equality holds because the monom
profiles rapidly decay towards zero so that the major con
bution comes from the loop-dominated regimez,z* @10#.
Another way to estimateG i is to integrate the density profil
ra,i of the end monomers of the adsorbed chains. This d
sity profile can also be expressed in terms of the partit
function as@10#

ra,i~z!5
2f i

0

Ni
Za,i~Ni ,z! ~2.9!

so that

G i5f i
0E

0

`

dzZa,i~Ni ,z!. ~2.10!

Based on these introductory considerations we want to
cuss now the structure of an adsorbed layer consisting of
chains of different length, which is in equilibrium with
dilute solution. Under this condition one can neglect the b
and the free-chain volume fraction in comparison to the lo
monomer concentration inside the layer so that the poten
in Eq. ~2.2! becomes

U~z!5 (
i51,2

@f l, i~z!1f t,i~z!#. ~2.11!
i-

n-
n

s-
o

k
l
al

For this situation two cases are distinguished: Case~a! refers
to the situation whenR1@R2 and both radii of gyration are
much larger than the sizel of the adsorbed layer. On th
other hand, in case~b! only R1 is assumed to exceedl,
whereasR2!l.

A. Both chains are larger than the size of the layer:
l!R2!R1

Equation~2.2! has the general solution

Zi~ni ,z!5(
s
Kscs~z!exp@2Esni #, ~2.12!

where the normalized~real! eigenfunctions satisfy

2
d2cs

dz2
1U~z!cs5Escs ~2.13!

andKs is given byKs5*0
`dzcs(z) @10#. If U(z) were zero,

Eq. ~2.12!, subject to the boundary conditions of the adso
tion problem, would have one bound~i.e., adsorbed! state
E0521/b2 and the corresponding eigenfunction would d
crease exponentially with decay-lengthb. The presence of
the repulsive potentialU(z) can only increase the ground
state energy without adding further bound states. There
we have 21/b2,E05:2e521/l2 if U(z) is nonzero.
However, as in the case whenU(z)50, the ground-state
eigenfunction decreases exponentially~if z>l), but the de-
cay length is nowl. Thereforel measures thesizeof the
adsorbed layer@10#.

If ni@1 one can separate the contribution of the adsor
chains toZi from that of the free chains in the following wa
@10#:

Zi~ni ,z!5K0c0~z!exp@nie#1E
0

`

dqK~q!c~q,z!

3exp@2niq
2#

5Za,i~ni ,z!1Zf, i~ni ,z!. ~2.14!

In the limit ni→`, Zf, i vanishes and the partition function o
the adsorbed chains solely determinesZi . Theground-state
dominance approximation@1# only works withZa,i also for
finite chain length and thus ignores the contribution of t
tails @see Eq.~2.6!#. Inserting Eq.~2.14! into Eq. ~2.10! the
adsorbance becomes

G i5f i
0K0

2exp@Nie#. ~2.15!

The same result could have been obtained by balancing
chemical potential of the adsorbed layer with that of the
lute bulk ~see Sec. III B for an application and@11#!. Using
Eqs. ~2.14! and ~2.15! in Eqs. ~2.5! and ~2.6! the profile of
the loops is determined by@10#

f l, i~z!5c i
2 :5G l, ic0

2~z!'G ic0
2~z! ~2.16!

with
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2
d2c i

dz2
1@U~z!1e#c i50;

dc i

dz U
0

52
1

b
c i~0!, lim

z→`

c i~z!50, ~2.17!

and that of the tails by

f t,i~z!5Bic i~z!w i~z!, ~2.18!

where

Bi5
2G i

NiKi
; Ki.AG iK0 ~2.19!

and

w i~z!5E
0

Ni
dnZf, i~n,z!exp@2ne# ~2.20!

with

2
d2w i

dz2
1@U~z!1e#w i51; w i~0!50, lim

z→`

w i~z!.
1

e
.

~2.21!

Since the functions,c i andw i obey the same equations wit
the same boundary conditions for both chain lengths,
must have

c1~z!5C12c2~z! and w1~z!5w2~z!5w~z!, ~2.22!

whereC12 is a proportionality constant andw1 has to be
equal tow2 due to the 1 on the right-hand side of Eq.~2.21!.
The physical reason for the latter property is thatw repre-
sents the partition function of a tail, which is the same
both short and long chains, since the density profiles of
end monomers,ra,i(z), are cut off exponentially ifz>l and
we assumel!R2!R1 in this section. If one uses this ansa
together with Eqs.~2.16! and~2.18! in Eq. ~2.11! the poten-
tial U(z) is written as

U~z!5c1
2~z!1c2

2~z!1B1c1~z!w1~z!1B2c2~z!w2~z!

5c2~z!1Bc~z!w~z! ~2.23!

with the definitions

c~z!:5A11C12
2 c2~z! and B5

1

l 3
:5

B1C121B2

A11C12
2
.

~2.24!

As in Ref. @10# the last definition introduces a new leng
scale l which will turn out to be related to the crossov
lengthz* from the loop- to the tail-dominated regime. Th
functionsc and w satisfy Eqs.~2.17! and ~2.21! with the
potential ~2.23!. In this form the equations are identical
those for monodisperse chains so that the solutions der
in Ref. @10# can be used. Before applying these solutions
calculate the loop and tail profiles we want to determine a
discuss the proportionality constantC12 in the next two sub-
sections, sinceC12 is related to the ratio of the adsorbance
e

r
e

ed
o
d

.

1. Chain-length and concentration dependence ofe

Since the total adsorbanceG is given by G11G2, one
finds by using Eqs.~2.8!, ~2.16!, and~2.22!,

C12
2 5

G1

G2
. ~2.25!

On the other hand, the ratio of the two adsorbances can
be expressed with the help of Eqs.~2.15! and ~2.19! as

S G1

G2
D 25f1

0

f2
0 SK1

K2
D 2exp@~N12N2!e#.

Taking into account thatKi5*0
`dzc i(z) another application

of Eq. ~2.22! yieldsK1 /K25C12 so that

G1

G2
5

f1
0

f2
0 exp@~N12N2!e#. ~2.26!

From this equation the chain length dependence ofe ~i.e., of
the size of the adsorbed layer! can be derived if one uses@see
Eqs.~2.15!, ~2.19!, and~2.25!#

G5G11G25Af1
0K1exp@N1e/2#F11

1

C12
2 G

and the results of Sec. II A 3@see Eqs.~2.39!–~2.42!#,

G5
2

b
, K15

C12

A11C12
2
A2ln

l

b
.

This yields fore

N1e52 lnFf1
0b2S 11

f2
0

f1
0 expF2S 12

N2

N1
DN1eG D G ,

~2.27!

where a term of order ln@ln(l/b)# has been ignored and Eq
~2.26! was applied again. This equation determinese in a
self-consistent fashion. Analytically, it can only be solved
N15N25N, with the result Ne52 ln@(f1

01f2
0)b2#. If

N2,N1, an approximate formula may be obtained by assu
ing C12

22 to be small so that the leading order expressi
N1e52 ln@f1

0b2#, can be reinserted in the right-hand side
Eq. ~2.27!. Then

N1e'2 lnFf1
0b2S 11

f2
0

f1
0 ~f1

0b2!12N2 /N1D G . ~2.28!

This equation~fortuitously! recovers the monodisperse resu
if N15N2. Since the exponential function in Eq.~2.26! is
always larger than or equal to 1, the assumptionC12

22,1 is
certainly justified if f2

0<f1
0 , but also remains valid for

f2
0.f1

0 as long asN2 /N1, ln(f2
0b2)/ln(f1

0b2). In the oppo-
site case,N2 /N1. ln(f2

0b2)/ln(f1
0b2), one can again derive a

approximate formula fore, which coincides with Eq.~2.28!
when interchanging the labels 1 and 2.

Equation~2.28! provides a criterion for the validity of the
initial assumption that the thicknessl51/e1/2 of the ad-
sorbed layer is smaller than the radius of gyration of
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short chains. The conditionl,R2 is satisfied as long a
N2 /N1.21/ln@f1

0b2„11(f2
0/f1

0)(f1
0b2)12N2 /N1

…#. The op-
posite case where the short chains only have a weak affi
to the covered wall is considered in Sec. II B.

Inserting the approximate formula~2.28! in Eq. ~2.26! one
obtains for the ratioG1 /G2

G1

G2
5

f1
0

f2
0 Ff1

0b2S 11
f2
0

f1
0 ~f1

0b2!12N2 /N1D G2~12N2 /N1!

~2.29!

and forG1 /G andG2 /G

G1

G
5H 11

f2
0

f1
0 Ff1

0b2S 11
f2
0

f1
0 ~f1

0b2!12N2 /N1D G12N2 /N1J 21

~2.30!

and

G2

G
5H 11

f1
0

f2
0 Ff1

0b2S 11
f2
0

f1
0

3~f1
0b2!12N2 /N1D G2~12N2 /N1!J 21

, ~2.31!

which yields forN15N2

G1

G
5

f1
0

f1
01f2

0 ;
G2

G
5

f2
0

f1
01f2

0 ~2.32!

and forN2 /N1→0

G1

G
5

1

11f2
0b2~11f2

0b2!
;

G2

G
5

f2
0b2~11f2

0b2!

11f2
0b2~11f2

0b2!
.

~2.33!

Equations~2.30! and ~2.31! show that the ratios of the ad
sorbances only depend onN2 /N1 and not on the individua
chain lengths. The same result is also found in the~numeri-
cal! solution of the Scheutjens-Fleer theory@5,6#, with which
we want to compare our analytical expressions in the n
subsection.

2. Comparison with the Scheutjens-Fleer theory

In Ref. @6# Fleer discusses the structure of the adsor
layer of a multicomponent mixture in the ground-state a
proximation and compares the results with the numerical
lutions of self-consistent-field calculations. For the adso
tion of two polymers differing only in chain length he find
for the total adsorbance@using our notation; see Eq.~20! of
Ref. @6##

G5G11G25BF@f1
0exp~N1e!1f2

0exp~N2e!#,

where the factorBF is taken to be 6 in numerical applica
tions. Solving this equation fore and settingG51 @6# one
obtains

N1e52 lnFBFf1
0S 11

1

C12
2 D G ,
ity

xt

d
-
o-
-

which coincides with Eq.~2.27! when identifyingBF with
b2. Using therefore b256 and choosing furthermore
f1
05f2

05f051022,1024,1026, Eq. ~2.31! can be compared
with Fig. 1 of Ref. @6#. The result of this comparison i
presented in Fig. 1. In the range of validity of Eq.~2.28! our
approximate formula agrees very well with the numeric
solution of the Scheutjens-Fleer theory. Since the dep
dence ofG2 /G on N2 /N1 is symmetric, this shows that Eq
~2.31! represents an adequate approximation for all relev
ratios of chain lengths. In addition, Fig. 1 also illustrates t
adsorption preference of the long chains. As in experime
@1#, the preference is more pronounced in more dilute so
tions. Atf051026 a chain length difference of 20% reduce
the contribution of the short chains to the total adsorbanc
below 10%, whereas it is close to 40% iff051022. Cer-
tainly, this latter volume fraction is an upper limit for a dilut
polymer solution becausef0 has to be smaller than the ove
lap concentration f*'(N1

dn211N2
dn21)21ud54,n51/2

51/(N11N2), which requiresN1 to be less than 100 if
f051022.

3. Concentration profiles of loops and tails

Sincec1 is proportional toc2 andw15w2, the loop and
the tail concentration profiles of the two types of chains
proportional to each other inside the adsorption layer. Us
Eqs.~2.16!, ~2.22!, and~2.26! one finds for the loops

f l,2~z!5c2
2~z!5C12

22c1
2~z!5

G2

G1
f l,1~z!, ~2.34!

and for the tails by virtue of Eqs.~2.18!, ~2.19!, ~2.22!,
~2.25!, andK1 /K25C12,

f t,2~z!5B2c2~z!w2~z!5
N1G2

N2G1
f t,1~z!. ~2.35!

FIG. 1. Comparison of the Scheutjens-Fleer theory and
~ 2.31!. The figure shows the ratio of the adsorbanceG2 of the short
chains to the total adsorbanceG (5G11G2) as a function of the
chain-length ratioN2 /N1 when both chains have the same bu
volume fractionf0 and b256. The thick lines correspond to th
Scheutjens-Fleer~SF! theory@6#, whereas the thin solid lines are th
results of Eq.~2.31!.
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The ratios of the two loop and chain profiles are plotted
Fig. 2 as a function ofN2 /N1 for b256 and f1

0

5f2
05f051022,1026. As N2 /N1 decreases, the long poly

mers progressively expel the short chains from the wall
form the majority of the loops. This expulsion is more su
cessful in more dilute solutions. Whereas the ratio of
loop profiles ~i.e., G2 /G1) only decreases gradually fo
f051022 and even stays finite for very small values
N2 /N1, it is already completely negligible atN2 /N1'0.5 if
f051026. This behavior reflects the strong amplification
the adsorption preference by diluting the solution, which
also observed in experiments@1#. Contrary toG2 /G1 the ra-
tio of the tail profiles passes through a minimum upon
creasingN2 /N1. This minimum is well pronounced@at
(0.343, 0.505)# for f051022, but very shallow and there
fore invisible @at (8.3131022, 1.9631024)# for f051026,
which is another consequence of the adsorption prefere
The existence of this minimum and the subsequent incre
of f t,2 /f t,1 means that most of the tail monomers belong
short chains ifN2 /N1 becomes small.

In addition to these general relations between the profi
one can also immediately obtain their spatial variation, si
thez dependence ofc i andw i is determined by that ofc and
w. As mentioned above, these functions satisfy Eqs.~2.17!

FIG. 2. Variation of the ratiosG2 /G1 andN1G2 /N2G1 with the
N2 /N1. These ratios coincide withf l,2 /f l,1 and f t,2 /f t,1 due to
Eqs. ~2.34! and ~2.35!. In this figure the same bulk volume frac
tions, f051022 and f051026, have been used for both chain
andb2 was taken to be 6.
d
-
e

s

-

e.
se

s
e

and ~2.21!, which are the same as in the monodisperse c
@10#:

c~z!5
A2
z
; w~z!5

1

3
z2ln

l

z
for b!z! l , ~2.36!

c~z!5
360l 3

z4
; w~z!5

z2

18
for l!z!l, ~2.37!

c~z!5const3
l 3

l4 expF2
z

lG ; w~z!5l2 for l!z.

~2.38!

@Formally, the monodisperse results of Ref.@10# can be re-
covered in the limitC12→`, which is realized either by
f2
0→0 or by (N12N2)→`.# The resulting concentration

profiles for loops and tails are compiled in Table I. In a dilu
solution the adsorbed chains also determine the overall c
centration profile outside the adsorption layer up to a d
tanceDi'Ni /l.Ri , whereas free chains dominate furth
away from the wall. Since the free chains are expelled fr
the layer, their profile gradually increases towards the b
concentration forz.l. Due to this opposite behavior of th
adsorbed- and free-chain profiles the overall concentra
profile of the short and the long chains exhibits a minimu
As in the monodisperse case this minimum is shallow an
predicted to lie atD1 for the long and atD2 for the short
chains.

Equations~2.36!–~2.38! show thatc(z) rapidly decreases
with increasing distance to the wall. Therefore the consta
Ki and the adsorbancesG i can be approximated by Eq.~2.36!
very well @10#. ForKi one obtains

K15
C12

A11C12
2 E0

`

dzc~z!.
C12

A11C12
2 Eb

l

dzc~z!

5
C12

A11C12
2
A2ln

l

b
,

~2.39!

K2.
1

A11C12
2
A2ln

l

b
, ~2.40!

where the lower bound of the integral was replaced byb.
This amounts to changing the variablez to z1b for z! l ,
f the

ed from
TABLE I. Concentration profiles for loops and tails if both chains are much larger than the size o
layer, i.e.,l!R2!R1. The profiles are calculated from Eqs.~2.16! and ~2.18! by virtue of Eqs.~2.36!–
~2.43!. Only the profiles for the long chains are given, since those of the short ones can then be deduc
Eqs.~2.34! and ~2.35!.

b!z!z* z*!z!l l!z!R1 ,R2

f l ,1 G1

G

2
z2

G1

G

1800(z* )6

z8
~const!2

72
3

G1

G

~z* !6

l8 expF22
z

lG
f t,1 1

11N1 /~N2C12
2 !

4z

~z* !3
lnF z*

21/231/3zG 1

11N1 /(N2C12
2 )

20
z2

1

11N1 /~N2C12
2 !

const

l2 3expF2 z

lG
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which was justified in Ref.@10# to correctly account for the
boundary condition ofc close to the wall. Similarly, one
finds for the adsorbances

G1.
C12
2

11C12
2 E

b

l

dzc~z!2.
C12
2

11C12
2

2

b
, ~2.41!

G2.
1

11C12
2

2

b
, ~2.42!

which yields for the total adsorbanceG5G11G2.2/b. In
this calculation a term of order 1/l was neglected, since th
hitherto unspecified length scalel is strongly chain-length
dependent. If one uses the above derived results forKi and
G i in Eq. ~2.19!, l can be calculated from Eq.~2.24! as

l 35
1

23/2
N1N2b~11C12

2 !

N2C12
2 1N1

ln
l

b
.

Inserting the right-hand side of this equation into the ar
ment of the logarithm and ignoring a factor of ord
ln@ln(l/b)# one finds

l5:
1

21/231/3
z*

.
1

21/231/3S N2b~11C12
2 !

11N2C12
2 /N1

lnF N2~11C12
2 !

~11N2C12
2 /N1!b

2G D 1/3.
~2.43!

The identification ofl with the crossover length from th
loop- to the tail-dominated regime is legitimate, sincec is
much larger thanBw ~and thusf l@f t) for z! l @see Eq.
~2.36!#, whereas the opposite is true forl!z @see Eq.~2.37!#.

Equation~2.43! gives the chain-length and concentrati
dependence ofz* , which is exemplified in Fig. 3 for repre
sentative values ofN2 at f1

05f2
05f051022,1026. The

choicesN25102 for f051022 andN25106 for f051026

are certainly upper bounds if the solution is assumed to

FIG. 3. Dependence ofz* /N2
1/2 on N2 /N1 for N25102,

f051022, andN25102,106, f051026. As before, we additionally
useb256.
-

e

dilute, i.e., if f0,f* ~see above!. The figure shows tha
z* increases with the chain-length disparity, the dilution~es-
pecially at small values ofN2 /N1), and the size of the shor
chains. If N25102, z* rapidly becomes larger thanR2,
whereas small values ofN2 /N1 are needed forz* to exceed
R2 whenN25106. This shows on the one hand thatz* is in
general a large quantity so that the neglect of the term
order 1/l in Eqs. ~2.41! and ~2.42! is justified, and on the
other hand that the length scalesz* and R2 are not well
separated in practice. Therefore it remains to be shown
computer simulations or experiments to what extent
above derived asymptotic laws are in fact observable.

B. One chain is smaller and one larger than the size
of the layer: R2!l, l!R1

The discussion of the preceding section showed that
ready a small difference in chain length can entail a subs
tial adsorption preference for the longer chains in a dil
solution. Since the chain length disparity is very large in t
present case, one can thus assume that the properties o
adsorbed layer are exclusively defined by the long cha
They create the potential which determines the thermo
namic behavior of the short chains. Depending on the siz
the short chains one can distinguish the following two cas

U~z!5f1~z!5H 2/z2 for b!R2!z*

20/z2 for z*!R2!l,
~2.44!

where the potential and the crossover lengthz* are given by
the monodisperse result@10# ~i.e., by the limitC12→`). This
choice therefore assumes a situation in which the sm
chains attempt to adsorb through a layer formed by the l
polymers. In order to study the adsorption behavior un
these circumstances one can no longer work with Eq.~2.14!,
since the given expressions forZa and Zf are only valid
asymptotically forR2@l. Instead, one has to solve Eq.~2.2!
using Eq.~2.44!.

1. Short chains are smaller than z* : b!R2!z*

Introducing the Laplace transform,Z̃2(E,z), with respect
to n one can write Eq.~2.2! in the following form:

]2Z̃2
]z2

2@U~z!1E#Z̃2521. ~2.45!

With U(z) given by Eq.~2.44! this equation is solved for the
total and the free-chain partition function in Appendix A
From these results one can derive the partition function
the adsorbed chains. ForU(z)52/z2 the solution is@see Eq.
~A12!#

Z̃a,2~E,z!5
b

z1b

11AE~z1b!

E~11AEb!

3exp~2AEz!@12Ei~2AEb!exp~AEb!#,

~2.46!

where Ei(x) is the exponential integral function@17#. Since
b!R2, AEb!1 so that one can write
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11AE~z1b!

E~11AEb!
'
1

E
1
z1b

AE

and

@12Ei~2AEb!exp~AEb!#'2 lnAEb,

which then yields

Z̃a,2~E,z!'2
b

z1b
lnAEbF 1E1

z1b

AE Gexp@2AEz#.

~2.47!

Approximately, the inverse Laplace transform of Eq.~2.47!
is

Za,2~N2 ,z!' ln
AN2

b

b

z1b FerfcS z

2AN2
D

1
z1b

ApN2

expS 2
z2

4N2
D G . ~2.48!

This approximation is correct in the vicinity of the wall, bu
becomes unsatisfactory in the cutoff region of the lay
Since the adsorbance is primarily determined by small lo
close to the wall, one can use Eq.~2.48! to obtain the
leading-order result for the adsorbance of the small cha
@see Eq.~2.10!#,

G25f2
0E

0

`

dzZa,2~N2 ,z!5f2
0bF lnAN2

b G2. ~2.49!

The same result would have also been expected on the
of Eq. ~2.15!. Since N2e!1 in the present case
G2'f2

0bK2
2/2, which yields Eq.~2.49! when replacingl by

R2 and ignoring the prefactor in Eq.~2.40!. That the latter
manipulations are legitimate comes from the fact that
ground-state approximation can be applied as long
z,R2.

In addition to the adsorbance the concentration profile
the adsorbed chains can be calculated in the same app
mation. Since the Laplace transform of Eq.~2.5! is propor-
tional to (Z̃a,2)2, the approximate inverse transform of th
square of Eq.~2.47! gives

fa,2~z!'f2
0F lnAN2

b G 2F S b

z1bD 2erfcS z

AN2
D

2
b2

N2
F ~z1b!222b2

~z1b!2 GerfcS z

AN2
D

1
2b2

ApN2
F z12b

~z1b!2GexpS 2
z2

N2
D G , ~2.50!

where erfc(x) is the complementary error function@17#. This
equation shows that the concentration at the wall,

fa,2~0!'f2
0F lnAN2

b G2, ~2.51!
r.
s

s

sis

e
s

f
xi-

increases with increasing chain length and that the conc
tration of the short chains is negligibly small atz5R2, i.e.,

fa,2~AN2!'f2
0F b

AN2

ln
AN2

b G 2!f2
0. ~2.52!

On the other hand, free short chains from the bulk also e
the adsorption layer and contribute to the short-chain c
centration profile. Qualitatively, one expects the free cha
to penetrate up to a distance where the mesh size of the la
which is essentially determined by the concentration pro
of the long chains, becomes comparable to their radius
gyration R2. Hence the concentration profile of the fre
chains is reduced by a factor of order 1 atz5R2 with respect
to the bulk valuef2

0. Since additionally the concentration o
the adsorbed chains is very small atz5R2, the total concen-
tration profile of the short chains should exhibit a minimu
in the layer.

To test this idea let us calculate the~initial! decrease of
the free-chain profile when entering the layer from the bu
Using again the approximationAEb!1 one finds from Eqs.
~A8!, ~A9!, and~A11! ~see Appendix A!

Z̃f,2~E,z!'
1

E
2

1

2E
Ei~2AEz!F12

1

AEzGexp@AEz#
2

1

2E
Ei~AEz!F11

1

AEzGexp@2AEz#.

~2.53!

If one expands the exponential integral for largez the initial
decrease of the partition function is

Z̃f,2~E,z! ;
z@11

E
2

2

E2z2

so that the free-chain profile@obtained from the inverse
Laplace transform of (Z̃f,2)2, as before# asymptotically be-
haves as

f f,2~z! ;
z@1

f2
0F12

2

z2
N2G . ~2.54!

This result can be rationalized as follows: The concentrat
profile of the free chains is proportional to the probability
entering the adsorbed layer, which is in turn proportional
the Boltzmann factor exp@2F/kBT#. Since the free energy is
~approximately! given byF/kBT'N2U(z)52N2 /z

2, we ob-
tain

f f,2~z!'f2
0exp@2N2U~z!#, ~2.55!

which gives Eq.~2.54! in the limit z@1. Numerically, Eq.
~2.55! provides a good description of the behavior off f,2 up
to the minimum of the total concentration profile so that o
can use this equation and the leading expression forfa,2 to
assesszmin . Approximating therefore the total concentratio
profile by
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f2~z!'fa,2~z!1f f,2~z! ~2.56!

'f2
0F S lnAN2

b D 2S b

z1bD 2erfcS z

AN2
D

1expS 2
2N2

z2 D G ~2.57!

yields zmin}R2, as expected. The ratiozmin /R2 is found to
slowly decrease with increasingR2. Additionally, Eq.~2.57!
shows that almost total depletion occurs at the minimum
reasonable chain lengths.

2. Short chains are larger than z* : z*!R2!l

In this regime the short chains also feel the potential
z.z* . In order to derive the corresponding partition fun
tions,U(z)52/z2 must be replaced byU(z)520/z2, but oth-
erwise the same methods can be used to solve Eq.~2.45! ~see
Appendix A!. The result for the partition function of th
adsorbed chains is@see Eq.~A16!#

Z̃a,2~E,z!5Aa,2F11
10

E1/2z
1

45

Ez2
1

105

E3/2z3
1

105

E2z4G
3exp@2AEz#. ~2.58!

Formally, the integration constant in Eq.~2.58! is given by
the difference of the integration constants for the total a
the free-chain partition functions, i.e., byAa,2
5A22Af,2 . However,A2 andAf,2 cannot be determined
via the conditions~A2! and ~A3! becausez@z*@b. To fix
Aa,2 nevertheless one can argue that an adsorbed chain i
regimez!R2 does not feel whether its radius of gyration
smaller or larger thanl so that the results of Sec. II A shoul
be applicable. This amounts to requiring the smallz behavior
of Eq. ~2.58! to equal@see Eqs.~2.14!, ~2.37!, and~2.40!#

Za,2~N2 ,z!'
b

2
K2c~z! ;

z*!z

30F lnz*b Gb~z* !3

z4
,

which yields

Aa,25
2

7 F lnz*b Gb~z* !3E. ~2.59!

If this result is inserted in Eq.~A1! one can calculate the
contribution of the regionz*!z to the adsorbance, i.e.,

G2
z*!z5f2

0E
z*

`

dzZa,2~N2 ,z!.

Integrating Eq.~2.58! first and performing then the invers
Laplace transform one obtains

G2
z*!z'10f2

0b ln
z*

b
. ~2.60!

To estimate also the contribution from the regionz!z* the
results of the preceding subsection cannot be applied
rectly, since the integration constants were determined
assumingz* to be infinite. However, one can proceed
r

r

d

the

i-
y

before and fix the integration constant for the partition fun
tion of the adsorbed chains by requiringZa,2 to equal@see
Eqs.~2.14!, ~2.36!, and~2.40!#

Za,2~N2 ,z!'
b

2
K2c~z! ;

z!z*
b ln

z*

b

1

z
,

which gives

Aa,25bF lnz*b G1E. ~2.61!

Laplace transformation and integration then yield

G2
z!z*'f2

0bF lnz*b G2. ~2.62!

With this result the total adsorbance is given by

G2'G2
z!z*1G2

z*!z'f2
0b ln

z*

b F lnz*b 110G'G2
z!z* .

~2.63!

As in the previous case, this equation coincides with
expectation from Sec. II A. This could have been anticipa
because the arguments given in the discussion following
~2.49! also apply to the present case whereR2.z* . If
R2.z* , the integral of the ground-state eigenfunction
dominated by the vicinity ofz* so thatG2'f2

0b ln2(z* /b) to
leading order. Similarly, one expects that the total concen
tion profile is dominated by the ground state, i.
f2(z)'fa,2(z)}z

22, close to the wall and exhibits a mini
mum, the position of which is proportional toR2.

III. SCALING APPROACH

Whereas the mean-field theory is only practically relev
for ~nearly! ideal solutions, the aim of the scaling theory is
extend the description to good solvents, where the exclud
volume interaction is important. This section therefore
considers the structural properties of the adsorbed laye
scaling arguments. The first subsection examines the l
and tail profiles, whereas the second discusses the ad
bances and related quantities.

A. Loop and tail profiles

Originally, the scaling theory of polymer adsorption w
developed by de Gennes@14#. The theory starts from the
assumption that the structure of the adsorbed layer islocally
identical to that of a semidilute bulk solution. The structu
of a semidilute solution is characterized by the blob sizej
which depends on concentration asj;f2n/(dn21) @15#,
whered is the space dimension andn is the critical exponent
of the order-parameter correlation length (n50.588 in
d53 for polymers@12#!. Sincef decreases with increasin
distance,z, to the wall,j must increase withz. As long as
b,z,l,R2 ,R1, de Gennes suggested that it is the on
relevant length scale so thatj(z).z.nn @14#. Hence

f~z!;z2d11/n, ~3.1!
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which gives back the mean-field result,f(z);z22, for
d54 andn51/2 ~see Table I!.

However, the preceding discussion based on mean-
theory suggests that there exists an intermediate length s
z* and that the power-law behavior of Eq.~3.1! should only
be observed if eitherz,z* or z.z* . If one assumes that th
mean-field predictions remain qualitatively valid under go
solvent conditions, for instance, that the loops also domin
close to the wall, one obtains

f~z!'f l~z!5f l,1~z!1f l,2~z!;z2d11/n .

SinceR1 andR2 are larger than the thickness of the layer, t
loop and tail partition functions of the short and the lo
chains are identical forz,l. This implies for the loop con-
centration profiles of both chains

f l,1~z!}f l,2~z!;z2d11/n if z,z* . ~3.2!

Since f l,1 is proportional to f l,2 , the condition
G'*0

`dzf l(z) quite generally yields

f l,2~z!5
G2

G1
f l,1~z!,

i.e., Eq.~2.34!. Additionally, a comparison of Eq.~3.2! with
the scaling theory of Refs.@10,11# reveals that the individua
loop profiles behave as in the monodisperse case so tha
results of Refs.@10,11# can be used. More precisely, th
implies that the tail profiles are given by

f t,1~z!;
G1

N1
z2111/n and f t,2~z!;

G2

N2
z2111/n,

~3.3!

if z,z* , which yields the mean-field result forn51/2.
Equation~3.3! also shows that

f t,2~z!5
N1G2

N2G1
f t,1~z!,

which coincides with Eq.~2.35!. Therefore Eqs.~2.34! and
~2.35! do not depend on the mean-field approximation,
are quite general results.

Since the loop profile decreases and the tail profile
creases with increasingz, there must be an intersection poin
This intersection point defines the~up to now undetermined!
crossover lengthz* @10,11#. Requiring the total loop and tai
profiles to be equal atz* , i.e., f l(z* )5f t(z* ), Eqs. ~3.2!
and ~3.3! yield

z*.F N2~11C12
2 !

~11N2C12
2 /N1!G

G1/~d21!

, ~3.4!

whereC12
2 5G1 /G2, as before. Up to a logarithmic factor an

numerical constants this result agrees with Eq.~2.43! when
choosingd54.

The opposite behavior of the loop and the tail profi
suggests that~as in mean-field theory! the loops only domi-
nate as long asz,z* , whereas the total concentration profi
is determined by the tail contribution, i.e.,f(z)
ld
ale

te

the

t

-

'ft(z)5f t,1(z)1f t,2(z), if z.z* . The self-similar struc-
ture of the total concentration profile then entails in analo
to Eq. ~3.2!

f t,1~z!;
G1

N1
~z* !2111/nF zz* G2d11/n

and

f t,2~z!;
G2

N2
~z* !2111/nF zz* G2d11/n

, ~3.5!

where the prefactors were determined by requiring the
profiles forz.z* to equal those forz,z* at z5z* . Since
the profiles for the short and the long chains are proportio
to each other, the results of the monodisperse case ca
applied. This implies for the loop profiles in the regio
z.z* @10,11#

f l,1~z!}f l,2~z!;~z* !2d11/nF zz* G ~12g22dn!/n

, ~3.6!

where g is the critical exponent of the susceptibilit
(g51.162 for polymers ind53 @12#!. Equation~3.6! coin-
cides with Eq.~3.2! at z5z* . These results forz,z* and
z.z* show that the total loop and tail profiles may be wr
ten in terms of a scaling function asf l,t(z)
5z2d11/nf̃ l,t(z/z* ) and thatz* is the relevant length scal
in the universal central region of the adsorbed layer.

The preceding discussion applies ifR1 andR2 are both
larger than the thickness of the adsorption layer. IfR2,l,
the short chains are almost completely expelled from
layer and the lengthsz* andl essentially agree with those o
a monodisperse layer which is formed by the long cha
only. In this case the previous formulas for the concentrat
profiles of the short chains remain valid up to the cut
lengthR2.

Additionally, the total concentration profiles of both th
short and long chains are expected to be nonmonotonic, a
mean-field theory.

B. Adsorbances and related quantities

The adsorbances of the two polymer species are de
mined by the equilibrium condition between the adsorb
layer and the dilute bulk solution, i.e., by the equality of t
chemical potentialsmads,i andmsol,i . To calculate the chemi-
cal potentials an expression for the respective free energi
needed. Since there aref i

0/Ni indistinguishable self-
avoiding polymers of speciesi in the bulk solution, the free
energy is given by

Fsol,i~f i
0 ,Ni !5Fsol,i~f i

0!1
f i
0

Ni
lnS f i

0

Nie
D 2

f i
0

Ni
ln~Ni

g21!,

~3.7!

where the first term is a chain-length independent contri
tion which contains the monomer partition function, the se
ond term accounts for the entropy of mixing, and the l
term, the so-calledenhancement factor, originates from the
partition function of a single self-avoiding chain. Equatio
~3.7! implies for the chemical potential
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msol,i5
dFsol,i
df i

0 1
1

Ni
lnS f i

0

Ni
D 2

1

Ni
ln~Ni

g21!. ~3.8!

The chemical potential of the adsorbed layer is more diffic
to estimate due to the contribution of the loops. In the int
facial region there areG i /Ni indistinguishable self-avoiding
chains of speciesi , each of which has two tails and anun-
knownnumber of loops. Due to this unknown number t
contribution of the loops cannot be estimated from the lo
partition function contrary to that of the tails. In analogy
Refs.@10,11# one finds that the partition function of a tail
given by

Zt,i~n!;n~g2n[d22] !/221 for i51,2; z,z* ~3.9!

and by

Zt,i~n!;~n* !~g2n[d22] !/221F nn* G2n~d21!21

for i51,2; z.z* , ~3.10!

wheren*.(z* )1/n. The prefactor forz.z* is determined in
such a way that Eqs.~3.9! and ~3.10! coincide forn5n* .
Using these results one obtains for the chemical potentia
the two tails of a chain

m t,i~G i ,Ni !.2
1

Ni
lnS E

0

Ni
dnZt,i~n! D 2

.2
1

Ni
ln~n* !g2n~d22!, ~3.11!

since the integral is dominated by the vicinity ofn* if
z*,Ri .

To estimate also the loop contribution to the free ene
one can assume that it primarily arises from the small lo
inside the proximal regionz,b. As the adsorbed layer i
~usually! fairly dense in the vinicity of the wall, one ca
further assume that the~vanishingly small! loops behave as i
they formeda two-dimensional melt. For two-dimensional
melts Duplantier showed that, though the exponentn takes
the classical valuen51/2, the susceptibility exponentg2d is
nontrivial, i.e.,g2d519/16 @16#. Taking this result into ac-
count for the enhancement factor the free energy of the lo
becomes in analogy to Eq.~3.7!

F l, i~G i ,Ni !'Fads,i~G i !1
G i

Ni
lnS G i

Nie
D 2

G i

Ni
ln~Ni

g2d21
!,

~3.12!

whereFads,i is a chain-length independent contribution r
lated to the partition function of an adsorbed monomer. T
yields for the chemical potential of the adsorbed layer

mads,i5
dFads,i
dG i

1
1

Ni
lnS G i

Ni
D2

1

Ni
ln~Ni

g2d21
!

2
1

Ni
ln~n* !g2n~d22!. ~3.13!
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Requiring now thatmads,15msol,1 andmads,25msol,2, and sub-
stracting the resulting equations the ratioG1 /G2 can be ex-
pressed as

G1

G2
5

f1
0

f2
0 SN1

N2
D g2d2g

exp@~N12N2!e#, ~3.14!

where e5(dFsol,1/df1
0)2(dFads,1/dG1)5(dFsol,2/df2

0)
2(dFads,2/dG2). This equation coincides with Eq.~2.26! in
the mean-field limit~i.e., g2d→g51). However, also in
good solvents the chain-length-dependent prefactor is alw
close to 1 for any reasonable choice of the ratioN1 /N2, since
g2d2g'0.0255. This means that the effect of the exclude
volume interaction is to renormalize the adsorption ener
whose chain-length and concentration dependence we w
to estimate now.

To calculate this dependence one can follow the lines
argument of Sec. II A 1. In addition to the ratioG1 /G2 also
one of the individual adsorbances, sayG1, is needed. Using
the equilibrium condition,mads,15msol,1, again one obtains

G15~f1
0!aN1

bF11
G2N1

G1N2
G2c

exp@aN1e#, ~3.15!

and from that by virtue ofG5G1(11G2 /G1)

N1e52
1

a
lnF ~f1

0!a

G
N1
bS 11

f2
0

f1
0 SN2

N1
D g2d2g

3expF2S 12
N2

N1
DN1eG D G

1
12a

a
lnS 11

f2
0

f1
0 SN2

N1
D g2d2g21

3expF2S 12
N2

N1
DN1eG D , ~3.16!

where the abbreviations a5n(d21)/(g1n),
b5„g2n(d22)1n(d21)@g2d2g#…/(g1n), and c5(g
2n@d22#)/(n1g) were introduced. Sinceg51.162 and
n50.588 ind53, the exponentsa, b, andc have the values
a'0.672, b'0.345, and c'0.328, whereasa51, and
b5c50 in the mean-field limit, i.e., ifn51/2, g2d5g51,
andd54. For the latter choices ofa, b, andc, Eq. ~3.16!
gives back the mean-field result~2.27!.

As in mean-field theory@see Eq.~2.27!# the adsorption
energy has to be determined self-consistently. In orde
derive an approximate expression fore let us assume that

f2
0

f1
0 SN2

N1
D g2d2g21

expF2S 12
N2

N1
DN1eG!1,

which requiresf2
0/f1

0<N2 /N1<1. Then the leading contri-
bution of Eq.~3.16! is

N1e52 lnF f1
0

G1/aN1
b/aG , ~3.17!

which, when inserted in Eq.~3.16!, yields
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N1e'2
1

a
lnF ~f1

0!a

G
N1
bS 11

f2
0

f1
0 SN2

N1
D g2d2g

3F f1
0

G1/aN1
b/aG12N2 /N1D G . ~3.18!

This equation coincides with Eq.~2.27! in the mean-field
limit, but depends explicitly onN1 ~and not only on
N2 /N1) under good solvent conditions. If Eq.~3.18! is in-
serted in Eq.~3.14! one obtains for the ratio of the adso
bances

G1

G2
5

f1
0

f2
0 SN1

N2
D g2d2gF ~f1

0!a

G
N1
bS 11

f2
0

f1
0 SN2

N1
D g2d2g

3F f1
0

1/aN1
b/aG12N2 /N1D G2~12N2 /N1!/a

, ~3.19!
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which yields forN2 /N151

G1

G2
5

f1
0

f2
0 ,

and forN2 /N1→0

G1

G2
5H f2

0

G1/a SN2

N1
D g2d2g

3N1
b/aF11

f2
0

G1/a SN2

N1
D g2d2g

N1
b/aG1/aJ 21

.

Using the latter result the ratiosG1 /G and G2 /G can be
expressed as
G

G1

G
5H 11

f2
0

G1/a SN2

N1
D g2d2g

N1
b/aF11

f2
0

G1/a SN2

N1
D g2d2g

N1
b/aG1/aJ 21

, ~3.20!

G2

G
5

~f2
0/G1/a!~N2 /N1!

g2d2gN1
b/a@11~f2

0/G1/a!~N2 /N1!
g2d2gN1

b/a#1/a

11~f2
0/G1/a!~N2 /N1!

g2d2gN1
b/a@11~f2

0/G1/a!~N2 /N1!
g2d2gN1

b/a#1/a
, ~3.21!
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if N2 /N1→0, whereas the mean-field results@i.e., Eq.
~2.32!# are recovered forN15N2.

If the radius of gyration of the short chains is smaller th
the size of the layer, but larger thanz* , the discussion pre
sented above remains valid. However, ifR2,z* , the contri-
bution of the tails to the chain’s free energy must be cal
lated from Eq.~3.9! alone. In analogy to Eq.~3.11! one then
finds

N2

G2
F t,2~G2 ,N2!.22lnS E

0

N2
dn@n~g2n[d22] !/221# D

.2 lnN2
g2n~d22!. ~3.22!

Determining from that the free energy of the adsorbed la
and balancing the resulting chemical potential with that
the bulk solution, one obtains for the adsorbance of the s
chains

G25f2
0N2

g2d2n[d22]exp@N2e#.f2
0N2

g2d2n[d22],
~3.23!

where we assumedN2e!1 as in mean-field theory. Sinc
the value of the exponent in this equation is numerica
close ton50.588@i.e.,g2d2n(d22)'0.6 ind53#, the ad-
sorbance is approximately proportional toR2 in this case.

IV. SUMMARY AND CONCLUDING REMARKS

This paper discusses equilibrium properties of the co
petitive adsorption between two polymer species of differ
length by mean-field and scaling theories. The employed
oretical methods are based on recent developments@10,11#
-

r
f
rt

y

-
t
e-

which extend the mean-field and scaling approaches to p
erly account for the contribution of loops and tails to t
overall concentration profile. A central result of this exte
sion is the appearance of a new length scalez* which sepa-
rates a loop-dominated regime closer to the wall from a t
dominated one farther away from the wall. This length sc
is also found in the present work. It increases with the s
ratio of the short and the long chains, the dilution, and
chain lengthN2 of the short chains.

The main results of the paper may be summarized as
lows. ~i! Long chains are adsorbed preferentially, and
adsorption preference becomes strongly reinforced when
luting the solution or decreasing the ratioN2 /N1. ~ii ! If both
chains are larger than the size,l, of the adsorbed layer the
adsorption preference is mainly due to the linear increas
the adsorption free energy per chain with chain length. T
details of the concentration profiles only have a minor infl
ence@see Eqs.~2.26! and ~3.14!#. In mean-field theory the
ratio of the adsorbances,G1 /G2, depends only onN2 /N1
@see Eq.~2.29!#, whereas an additional absolute depende
on N1 is found by the scaling analysis@see Eq.~3.19!#. The
loop- and tail-concentration profiles of the short and the lo
chains are proportional to each other inside the adsorp
layer and exhibit a~shallow! minimum outside the layer. The
position of this minimum differs for both chain types and
larger than the respective radius of gyration. It is located
D1}N1l

121/n.D2}N2l
121/n @19#. ~iii ! If the short chains

are smaller than the size of the adsorbed layer~which is then
assumed to be formed by the long chains only!, but larger
than z* the preceding discussion remains valid except t
the concentration profiles of the short chains are cut off at
radius of gyrationR2. Therefore the minimum of the shor
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chains’ total profile moves inside the adsorption layer a
becomes more pronounced asN2 decreases. Additionally, a
in the case where both chains are larger thanl, scaling
theory predicts that the adsorbance of the short chain
almost independent ofN2, but depends explicitly onN1 un-
der good solution conditions. Approximately, it is propo
tional to f0

2N1
1/2 @see Eq.~3.21!#. This scaling result is in

contrast to the mean-field prediction which yields a logari
mic dependence@see Eq.~2.63!#. ~iv! If the short chains are
smaller thanz* the minimum of the total concentration pro
file is strongly pronounced and the adsorbance shrinks
roughly G2'f0

2R2 @see Eq.~3.23!#. Again, the explicit de-
pendence ofG2 onR2 is a scaling prediction, whereas only
logarithmic dependence is expected from mean-field the
@see Eq.~2.49!#. ~v! The excess amount of monomers in t
interfacial region is dominated by the immediate vicinity
the wall, i.e., by the loops, irrespective of whetherR2 is
smaller or larger than the size of the adsorbed layer. Th
fore our mean-field results compare very well with the n
merical solution of the Scheutjens-Fleer theory.

In principle, it is possible to extend the present theory
continuous polydispersity distributions, as they often oc
in experiments. Experimental distributions usually exhibi
vanishing tail of ~very! long chains so that dilution an
chain-length effects may then strongly compete with e
other. To get a detailed insight in the competitive adsorpt
thermodynamics, numerical investigations are presuma
required. However, at the mean-field level, a crude estim
may be obtained by neglecting chain end effects and the
logarithmic factors~ground-state approximation!. This as-
sumption certainly overestimates the contribution of
small chains, but is a convenient starting point to gain a fi
idea. Let us further assume that the polydispersity distri
tion is narrow. A narrow distribution results, for instanc
from anionic polymerization and can be mimicked by
Gaussian distribution with mean̂N& and standard deviation
s5^N&(P21)1/2, whereP5^N2&/^N&2 denotes the polydis
persity. If this~weakly! polydisperse sample is exposed to
attractive wall one expects that the average chain lengt
the adsorbed chains,^N&a , is larger than the bulk value
whereass essentially stays the same. Roughly, one fin
^N&a'^N&„11(P21)ln@1/f0b2#…, where f0 is the total
monomer concentration in the bulk. This result also holds
the often used Poisson distribution. On the other hand,
highly polydisperse samples, as obtained by radical polym
ization, for instance, the adsorption is dominated by the la
est chain lengths of the distribution. Certainly, these pred
tions are fairly rough, since the experimental sample conta
many short chains whose weight in the layer is overestima
by the presented arguments. However, these examples
gest that a very narrow, but still realistic distribution behav
as a monodisperse sample with a slightly higher aver
length of the adsorbed chains, at least at moderate diluti

In the present work the two polymer species differ only
length. No disparity in interaction energy between~parts of!
the chains and the wall is considered. Those enthalpic eff
can, however, be important in practice. For polymers
comparable length one expects that the species, which in
acts more strongly with the surface, adsorbs preferenti
@1#. That a higher interaction energy can, to some exte
even outweigh a difference in chain length was pointed
d
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by a comparative infrared spectroscopy study of deut
opolystyrene and protiopolystyrene@18#. As long as the
length of protiosample did not considerably exceed that
the deuterated polymer the stronger interaction of deut
opolystyrene with the silicon oxide surface favored its a
sorption. This behavior could be reversed if protiopolys
rene carried a highly attractive carboxylic end group. Th
the chain length of the deuteriospecies had to be larger b
factor of about 80 to significantly suppress the preferen
adsorption of protiopolystyrene@18#. Those and comparabl
~i.e., block copolymers with blocks of different adsorptio
ability, etc.! energetic effects can be incorporated in o
theoretical framework and are therefore prospective topic
future work.

Another interesting topic is the formation of the equili
rium layer. Since the small chains move faster than the la
ones, one expects them to be adsorbed first at the wall. H
ever, in the~very! long time limit they have to be replaced b
the large chains. Theoretical studies on monodisperse la
@20# as well as experiments@21# indicate that this replace
ment is a rather slow process. How the replacement oc
and which dynamic properties determine the layer format
is what we want to investigate next.
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APPENDIX: SOLUTION OF EQ. „2.45…

If the radius of gyration of the short chains is smaller th
z* , the potential is given byU(z)52/z2 @see Eq.~2.44!#.
With the help of the Laplace transform,

Z̃2~E,z!5E
0

`

dnZ2~n,z!exp@2En#,

Eq. ~2.45! takes the following form:

]2Z̃2
]z2

2F 2z2 1EGZ̃2521, ~A1!

where the boundary conditionZ2(0,z)51 was used. After
Laplace transformation the other boundary conditions giv

]Z̃2~E,z!

]z
U
b

52
1

b
Z̃2~E,b!, ~A2!

lim
z→b
Z̃f,2~E,z!50, ~A3!

and

lim
z→`

Z̃2~E,z!5 lim
z→`

Z̃f,2~E,z!5
1

E
. ~A4!

The boundary conditions~A2! and ~A3! are evaluated a
z5b instead of atz50 because the form of the potential th
we use diverges asz→0. Since Eq.~A1! is invariant under
the transformationz→z1b, this procedure is legitimate an
may be reversed by replacingz with z1b in the final results.
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In order to solve Eq.~A1! we first determine the genera
solution of the homogeneous equation

]2Z̃ 2
h

]z2
2F 2z2 1EGZ̃2h50.

Inserting the ansatz

Z̃ 2,6
h ~E,z!5w6~E,z!exp@6Ez# and w6~E,z!

5 (
k50

`

ak
6
1

zk
~A5!

yields

Z̃ 2
h~E,z!5A1F12

1

AEzGexp@AEz#1A2F11
1

AEzG
3exp@2AEz#, ~A6!

whereA6 are integration constants. A specific solution of t
inhomogeneous equation is obtained by the method of
variation of constants

Z̃ 2
i ~E,z!5

1

E
1

1

2E
@2Ei~2AEz!1Ei~2AE!

2exp~2AE!#F12
1

AEzGexp@AEz#
1

1

2E
@2Ei~AEz!1Ei~AE!2exp~AE!#

3F11
1

AEzGexp@2AEz#, ~A7!

where Ei(x) denotes the exponential integral function@17#.
The general solution of Eq.~A1! is therefore

Z̃2~E,z!5
1

E
1

1

2E
@2EA12Ei~2AEz!1Ei~2AE!

2exp~2AE!#F12
1

AEzGexp@AEz#
1

1

2E
@2EA22Ei~AEz!1Ei~AE!2exp~AE!#

3F11
1

AEzGexp@2AEz#. ~A8!

The boundary condition~A4! fixes the integration constan
A1 for both the total and the free-chain partition function

A15Af,15
1

2E
@exp~2AE!2Ei~2AE!# , ~A9!

whereas Eq.~A2! yields forA2 of the total partition function

A25
1

2E
@exp~AE!2Ei~AE!1Ei~AEb!

2Ei~2AEb!exp~2AEb!#, ~A10!

and Eq.~A3! for the free-chain partition function
e

Af,25
1

2E Fexp~AE!2Ei~AE!1Ei~AEb!

2
2AEb
11AEb

exp~AEb!

2
12AEb
11AEb

Ei~2AEb!exp~2AEb!G . ~A11!

Replacingz with z1b, as mentioned before, and using E
~2.3! one obtains the partition function of the adsorb
chains

Z̃a,2~E,z!5Z̃2~E,z!2Z̃f,2~E,z!

5
b

z1b

11AE~z1b!

E~11AEb!

3exp~2AEz!@12Ei~2AEb!exp~AEb!#.

~A12!

In a similar fashion one can also calculate the total,
free-chain, and the adsorbed-chain partition function if
radius of gyration of the short chains lies betweenz* and
l. Then the potential isU(z)520/z2. Adding the two homo-
geneous solutions,

Z̃ 2,6
h ~E,z!5F17

10

E1/2z
1

45

Ez2
7

105

E3/2z3
1

105

E2z4G
3exp@6AEz#, ~A13!

to the special inhomogeneous solution one obtains for
total partition function

Z̃2~E,z!5
1

E
2

20

E2z2
1

280

E3z4
1FA12

1

2E
exp@2AE#

3S 11
10

E1/21
35

E
1

35

E3/2D GZ̃ 2,1
h ~E,z!

1FA22
1

2E
exp@AE#S 12

10

E1/2

1
35

E
2

35

E3/2D GZ̃ 2,2
h ~E,z!. ~A14!

Due to the boundary condition~A4! A1 has to equal the
second term in the bracket so that

Z̃2~E,z!5
1

E
2

20

E2z2
1

280

E3z4
1FA22

1

2E
exp@AE#

3S 12
10

E1/21
35

E
2

35

E3/2D GZ̃ 2,2
h , ~A15!

from which one obtains the partition function of the adsorb
chains by

Z̃a,2~E,z!5Z̃2~E,z!2Z̃f,2~E,z!5Aa,2Z̃ 2,2
h ~E,z!.

~A16!

The integration constantAa,2 is determined in Sec. II B 2.
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